Skip to main content

Advertisement

Log in

Developmental drift as a mechanism for aging: lessons from nematodes

  • Opinion Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Aging is a universal biological process that afflicts every creature on this planet. To date, we have a very poor understanding of what actually causes this degeneration. A commonly held view is that aging is the result of damage accumulation over a lifetime. However, research has shown that aging is not only the result of wear and tear in the organism, but also of genetic programs involved in organismal development that go awry as selective pressure is released. This review focuses on Wnt signalling pathways and discusses how these genetic programs orchestrate changes in the organism that could cause aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Adler AS, Sinha S, Kawahara TL et al (2007) Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes Dev 21:3244–3257

    Article  PubMed  CAS  Google Scholar 

  • Adler AS, Kawahara TL, Segal E, Chang HY (2008) Reversal of aging by NFkappaB blockade. Cell Cycle 7:556–559

    Article  PubMed  CAS  Google Scholar 

  • Blagosklonny MV (2012) Answering the ultimate question “what is the proximal cause of aging?”. Aging 4:861–877

    PubMed  Google Scholar 

  • Bolanowski MA, Russell RL, Jacobson LA (1981) Quantitative measures of aging in the nematode Caenorhabditis elegans. I. Population and longitudinal studies of two behavioral parameters. Mech Ageing Dev 15:279–295

    Article  PubMed  CAS  Google Scholar 

  • Brack AS, Conboy MJ, Roy S et al (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810

    Article  PubMed  CAS  Google Scholar 

  • Bresnick EH, Katsumura KR, Lee H-Y et al (2012) Master regulatory GATA transcription factors: mechanistic principles and emerging links to hematologic malignancies. Nucleic Acids Res 40:5819–5831

    Article  PubMed  CAS  Google Scholar 

  • Budovskaya YV, Wu K, Southworth LK et al (2008) An elt-3/elt-5/elt-6 GATA transcription circuit guides aging in C. elegans. Cell 134:291–303

    Article  PubMed  CAS  Google Scholar 

  • Budovsky A, Muradian KK, Fraifeld VE (2006) From disease-oriented to aging/longevity-oriented studies. Rejuvenation Research 9:207–210

    Article  PubMed  CAS  Google Scholar 

  • Budovsky A, Tacutu R, Yanai H et al (2009) Common gene signature of cancer and longevity. Mech Ageing Dev 130:33–39

    Article  PubMed  CAS  Google Scholar 

  • Cassata G, Shemer G, Morandi P et al (2005) ceh-16/engrailed patterns the embryonic epidermis of Caenorhabditis elegans. Development 132:739–749

    Article  PubMed  CAS  Google Scholar 

  • Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149:1192–1205

    Article  PubMed  CAS  Google Scholar 

  • Curran SP, Ruvkun G (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3:e56

    Article  PubMed  Google Scholar 

  • Dillin A, Crawford DK, Kenyon C (2002) Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298:830–834

    Article  PubMed  CAS  Google Scholar 

  • Dilman VM (1971) Age-associated elevation of hypothalamic, threshold to feedback control, and its role in development, ageine, and disease. Lancet 1:1211–1219

    Article  PubMed  CAS  Google Scholar 

  • Dilman VM, Young JK (1994) Development, Aging and Disease–A New Rationale for an Intervention Strategy. Harwood Academic Publishers, Chur

    Google Scholar 

  • Doonan R, McElwee JJ, Matthijssens F et al (2008) Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev 22:3236–3241

    Article  PubMed  CAS  Google Scholar 

  • Eisenmann DM (2005) Wnt signaling. WormBook 1–17

  • Ewbank JJ, Barnes TM, Lakowski B et al (1997) Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science 275:980–983

    Article  PubMed  CAS  Google Scholar 

  • Gerstbrein B, Stamatas G, Kollias N, Driscoll M (2005) In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans. Aging Cell 4:127–137

    Article  PubMed  CAS  Google Scholar 

  • Gleason JE, Szyleyko EA, Eisenmann DM (2006) Multiple redundant Wnt signaling components function in two processes during C. elegans vulval development. Dev Biol 298:442–457

    Article  PubMed  CAS  Google Scholar 

  • Golden TR, Melov S (2004) Microarray analysis of gene expression with age in individual nematodes. Aging Cell 3:111–124

    Article  PubMed  CAS  Google Scholar 

  • Gorrepati L, Thompson KW, Eisenmann DM (2013) C. elegans GATA factors EGL-18 and ELT-6 function downstream of Wnt signaling to maintain the progenitor fate during larval asymmetric divisions of the seam cells. Development 140:2093–2102

    Article  PubMed  CAS  Google Scholar 

  • Green JL, Inoue T, Sternberg PW (2008) Opposing Wnt pathways orient cell polarity during organogenesis. Cell 134:646–656

    Article  PubMed  CAS  Google Scholar 

  • Harding JJ (2002) Viewing molecular mechanisms of ageing through a lens. Ageing Res Rev 1:465–479

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  PubMed  CAS  Google Scholar 

  • Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362

    Article  PubMed  CAS  Google Scholar 

  • Heidler T, Hartwig K, Daniel H, Wenzel U (2010) Caenorhabditis elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1. Biogerontology 11:183–195

    Article  PubMed  CAS  Google Scholar 

  • Herndon LA, Schmeissner PJ, Dudaronek JM et al (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419:808–814

    Article  PubMed  CAS  Google Scholar 

  • Hill AA, Hunter CP, Tsung BT et al (2000) Genomic analysis of gene expression in C. elegans. Science 290:809–812

    Article  PubMed  CAS  Google Scholar 

  • Holowacz T, Zeng L, Lassar AB (2006) Asymmetric localization of numb in the chick somite and the influence of myogenic signals. Dev Dyn 235:633–645

    Article  PubMed  CAS  Google Scholar 

  • Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. Faseb J 13:1385–1393

    PubMed  CAS  Google Scholar 

  • Houtkooper RH, Williams RW, Auwerx J (2010) Metabolic networks of longevity. Cell 142:9–14

    Article  PubMed  CAS  Google Scholar 

  • Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13:225–238

    PubMed  CAS  Google Scholar 

  • Ishii N, Goto S, Hartman PS (2002) Protein oxidation during aging of the nematode Caenorhabditis elegans. Free Radic Biol Med 33:1021–1025

    Article  PubMed  CAS  Google Scholar 

  • Johnson TE (1987) Aging can be genetically dissected into component processes using long-lived lines of Caenorhabditis elegans. Proc Natl Acad Sci U S A 84:3777–3781

    Article  PubMed  CAS  Google Scholar 

  • Jones SJ, Riddle DL, Pouzyrev AT et al (2001) Changes in gene expression associated with developmental arrest and longevity in Caenorhabditis elegans. Genome Res 11:1346–1352

    Article  PubMed  CAS  Google Scholar 

  • Kenyon C, Chang J, Gensch E et al (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  PubMed  CAS  Google Scholar 

  • Koh K, Peyrot SM, Wood CG et al (2002) Cell fates and fusion in the C. elegans vulval primordium are regulated by the EGL-18 and ELT-6 GATA factors—apparent direct targets of the LIN-39 Hox protein. Development 129:5171–5180

    PubMed  CAS  Google Scholar 

  • Lai C-H (2000) Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res 10:703–713

    Article  PubMed  CAS  Google Scholar 

  • Lango Allen H, Flanagan SE, Shaw-Smith C et al (2012) GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet 44:20–22. doi:10.1038/ng.1035

    Article  Google Scholar 

  • Lezzerini M, Budovskaya Y (2013) A dual role of the Wnt signaling pathway during aging in Caenorhabditis elegans. Aging Cell. doi:10.1111/acel.12141

    PubMed  Google Scholar 

  • Liu J, Wu X, Mitchell B et al (2005) A small-molecule agonist of the Wnt signaling pathway. Angew Chem Int Ed Engl 44:1987–1990

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Fergusson MM, Castilho RM et al (2007) Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317:803–806

    Article  PubMed  CAS  Google Scholar 

  • Lund J, Tedesco P, Duke K et al (2002) Transcriptional profile of aging in C. elegans. Curr Biol 12:1566–1573

    Article  PubMed  CAS  Google Scholar 

  • MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26

    Article  PubMed  CAS  Google Scholar 

  • McGee MD, Weber D, Day N et al (2011) Loss of intestinal nuclei and intestinal integrity in aging C. elegans. Aging Cell 10:699–710

    Article  PubMed  CAS  Google Scholar 

  • Medawar PB (1952) An unsolved problem of biology. Lewis, London

    Google Scholar 

  • Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382:536–539

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay A, Tissenbaum HA (2007) Reproduction and longevity: secrets revealed by C. elegans. Trends Cell Biol 17:65–71

    Article  PubMed  CAS  Google Scholar 

  • Pan C-L, Peng C-Y, Chen C-H, McIntire S (2011) Genetic analysis of age-dependent defects of the Caenorhabditis elegans touch receptor neurons. Proc Natl Acad Sci USA 108:9274–9279

    Article  PubMed  CAS  Google Scholar 

  • Parker JA, Vazquez-Manrique RP, Tourette C et al (2012) Integration of β-catenin, sirtuin, and FOXO signaling protects from mutant huntingtin toxicity. J Neurosci 32:12630–12640

    Article  PubMed  CAS  Google Scholar 

  • Perez VI, Van Remmen H, Bokov A et al (2009) The overexpression of major antioxidant enzymes does not extend the lifespan of mice. Aging Cell 8:73–75

    Article  PubMed  CAS  Google Scholar 

  • Phillips BTKJ (2009) A new look at TCF and beta-catenin through the lens of a divergent C. elegans Wnt pathway. Dev Cell 17:27–34

    Article  PubMed  CAS  Google Scholar 

  • Samuelson AV, Carr CE, Ruvkun G (2007) Gene activities that mediate increased life span of C. elegans insulin-like signaling mutants. Genes Dev 21:2976–2994

    Article  PubMed  CAS  Google Scholar 

  • Shaye DD, Greenwald I (2011) OrthoList: a compendium of C. elegans genes with human orthologs. PLoS One 6:e20085

    Article  PubMed  CAS  Google Scholar 

  • Smith ED, Tsuchiya M, Fox LA et al (2008) Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Res 18:564–570

    Article  PubMed  CAS  Google Scholar 

  • Sulston JE, White JG (1980) Regulation and cell autonomy during postembryonic development of Caenorhabditis elegans. Dev Biol 78:577–597

    Article  PubMed  CAS  Google Scholar 

  • Tacutu R, Shore DE, Budovsky A et al (2012) Prediction of C. elegans longevity genes by human and worm longevity networks. PLoS One 7:e48282

    Article  PubMed  CAS  Google Scholar 

  • Tank EMH, Rodgers KE, Kenyon C (2011) Spontaneous age-related neurite branching in Caenorhabditis elegans. J Neurosci 31:9279–9288

    Article  PubMed  CAS  Google Scholar 

  • Tatar M, Bartke A, Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299:1346–1351

    Article  PubMed  CAS  Google Scholar 

  • Tissenbaum HA, Guarente L (2002) Model organisms as a guide to mammalian aging. Dev Cell 2:9–19

    Article  PubMed  CAS  Google Scholar 

  • Tissenbaum HA, Ruvkun G (1998) An insulin-like signaling pathway affects both longevity and reproduction in Caenorhabditis elegans. Genetics 148:703–717

    PubMed  CAS  Google Scholar 

  • Van Raamsdonk JM, Hekimi S (2012) Superoxide dismutase is dispensable for normal animal lifespan. Proc Natl Acad Sci USA 109:5785–5790

    Article  PubMed  Google Scholar 

  • Van Voorhies WA, Fuchs J, Thomas S (2005) The longevity of Caenorhabditis elegans in soil. Biol Lett 1:247–249

    Article  PubMed  Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411

    Article  Google Scholar 

  • Wolff S, Dillin A (2006) The trifecta of aging in Caenorhabditis elegans. Exp Gerontol 41:894–903

    Article  PubMed  Google Scholar 

  • Wolfson M, Budovsky A, Tacutu R, Fraifeld V (2009) The signaling hubs at the crossroad of longevity and age-related disease networks. Int J Biochem Cell Biol 41:516–520

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Kim SK (2012) The GATA transcription factor egl-27 delays aging by promoting stress resistance in Caenorhabditis elegans. PLoS Genet 8:e1003108

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Li J, Hekimi S (2007) A measurable increase in oxidative damage due to reduction in superoxide detoxification fails to shorten the life span of long-lived mitochondrial mutants of Caenorhabditis elegans. Genetics 177:2063–2074

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Judy M, Lee S, Kenyon C (2013) Article direct and indirect gene regulation by a life-extending FOXO protein in C. elegans : roles for GATA factors and lipid gene regulators. Cell Metab 17:85–100

    Article  PubMed  CAS  Google Scholar 

  • Zheng R, Blobel GA (2010) GATA transcription factors and cancer. Genes and cancer 1:1178–1188

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by MacGillavry fellowship at the University of Amsterdam. We thank all members of Stanley Brul’s lab for discussions and comments on the manuscript. In part, this work was reported at the 8th European Congress of Biogenontology (March, 2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yelena Budovskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lezzerini, M., Smith, R.L. & Budovskaya, Y. Developmental drift as a mechanism for aging: lessons from nematodes. Biogerontology 14, 693–701 (2013). https://doi.org/10.1007/s10522-013-9462-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-013-9462-3

Keywords

Navigation