Skip to main content

Advertisement

Log in

Cultured senescent myoblasts derived from human vastus lateralis exhibit normal mitochondrial ATP synthesis capacities with correlating concomitant ROS production while whole cell ATP production is decreased

  • Research article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The free radical theory of aging says that increased oxidative stress and mitochondrial dysfunction are associated with old age. In the present study we have investigated the effects of cellular senescence on muscle energetic by comparing mitochondrial content and function in cultured muscle satellite cells at early and late passage numbers. We show that cultured muscle satellite cells undergoing senescence express a reduced mitochondrial mass, decreased whole cell ATP level, normal to increased mitochondrial ATP production under ATP utilization, increased mitochondrial membrane potential and increased superoxide/mitochondrial mass and hydrogen peroxide/mitochondrial mass ratios. Moreover, the increased ROS production correlates with the corresponding mitochondrial ATP production. Thus, myotubes differentiated from human myoblasts undergoing senescence have a reduced mitochondrial content, but the existent mitochondria express normal to increased functional capabilities. The present data suggest that the origin of aging lies outside the mitochondria and that a malfunction in the cell might be preceding and initiating the increase of mitochondrial ATP synthesis and concomitant ROS production in the single mitochondrion in response to decreased mitochondrial mass and reduced extra-mitochondrial energy supply. This then can lead to the increased damage of DNA, lipids and proteins of the mitochondria as postulated by the free radical theory of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barazzoni R, Short KR, Nair KS (2000) Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart. J Biol Chem 275:3343–3347

    Article  PubMed  CAS  Google Scholar 

  • Barrientos A, Casademont J, Rotig A, Miro O, Urbano-Marquez A et al (1996) Absence of relationship between the level of electron transport chain activities and aging in human skeletal muscle. Biochem Biophys Res Commun 229:536–539

    Article  PubMed  CAS  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    PubMed  CAS  Google Scholar 

  • Boffoli D, Scacco SC, Vergari R, Solarino G, Santacroce G et al (1994) Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta 1226:73–82

    PubMed  CAS  Google Scholar 

  • Bratic I, Trifunovic A (2010) Mitochondrial energy metabolism and ageing. Biochim Biophys Acta 1797:961–967

    Article  PubMed  CAS  Google Scholar 

  • Brierley EJ, Johnson MA, James OF, Turnbull DM (1996) Effects of physical activity and age on mitochondrial function. QJM 89:251–258

    Article  PubMed  CAS  Google Scholar 

  • Bulteau AL, Ikeda-Saito M, Szweda LI (2003) Redox-dependent modulation of aconitase activity in intact mitochondria. Biochemistry 42:14846–14855

    Article  PubMed  CAS  Google Scholar 

  • Capel F, Buffiere C, Patureau MP, Mosoni L (2004) Differential variation of mitochondrial H2O2 release during aging in oxidative and glycolytic muscles in rats. Mech Ageing Dev 125:367–373

    Article  PubMed  CAS  Google Scholar 

  • Carlson ME, Suetta C, Conboy MJ, Aagaard P, Mackey A et al (2009) Molecular aging and rejuvenation of human muscle stem cells. EMBO Mol Med 1:381–391

    Article  PubMed  CAS  Google Scholar 

  • Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  PubMed  CAS  Google Scholar 

  • Chretien D, Gallego J, Barrientos A, Casademont J, Cardellach F et al (1998) Biochemical parameters for the diagnosis of mitochondrial respiratory chain deficiency in humans, and their lack of age-related changes. Biochem J 329(Pt 2):249–254

    PubMed  CAS  Google Scholar 

  • Conley KE, Jubrias SA, Esselman PC (2000) Oxidative capacity and ageing in human muscle. J Physiol 526(Pt 1):203–210

    Article  PubMed  CAS  Google Scholar 

  • Cooper JM, Mann VM, Schapira AH (1992) Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: effect of ageing. J Neurol Sci 113:91–98

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo PA, Mota MP, Appell HJ, Duarte JA (2008) The role of mitochondria in aging of skeletal muscle. Biogerontology 9:67–84

    Article  PubMed  CAS  Google Scholar 

  • Frederiksen CM, Hojlund K, Hansen L, Oakeley EJ, Hemmings B et al (2008) Transcriptional profiling of myotubes from patients with type 2 diabetes: no evidence for a primary defect in oxidative phosphorylation genes. Diabetologia 51:2068–2077

    Article  PubMed  CAS  Google Scholar 

  • Gaster M (2007) Insulin resistance and the mitochondrial link. Lessons from cultured human myotubes. Biochim Biophys Acta 1772:755–765

    Google Scholar 

  • Gaster M (2009) Reduced TCA flux in diabetic myotubes: a governing influence on the diabetic phenotype? Biochem Biophys Res Commun 387:651–655

    Article  PubMed  CAS  Google Scholar 

  • Gaster M, Beck-Nielsen H (2004) The reduced insulin-mediated glucose oxidation in skeletal muscle from type 2 diabetic subjects may be of genetic origin—evidence from cultured myotubes. Biochim Biophys Acta 1690:85–91

    PubMed  CAS  Google Scholar 

  • Gaster M, Beck-Nielsen H (2006) Triacylglycerol accumulation is not primarily affected in myotubes established from type 2 diabetic subjects. Biochim Biophys Acta 1761:100–110

    PubMed  CAS  Google Scholar 

  • Gaster M, Beck-Nielsen H, Schroder HD (2001a) Proliferation conditions for human satellite cells. The fractional content of satellite cells. APMIS 109:726–734

    Article  PubMed  CAS  Google Scholar 

  • Gaster M, Kristensen SR, Beck-Nielsen H, Schroder HD (2001b) A cellular model system of differentiated human myotubes. APMIS 109:735–744

    Article  PubMed  CAS  Google Scholar 

  • Gaster M, Schroder HD, Handberg A, Beck-Nielsen H (2001c) The basal kinetic parameters of glycogen synthase in human myotube cultures are not affected by chronic high insulin exposure. Biochim Biophys Acta 1537:211–221

    PubMed  CAS  Google Scholar 

  • Gaster M, Petersen I, Hojlund K, Poulsen P, Beck-Nielsen H (2002) The diabetic phenotype is conserved in myotubes established from diabetic subjects: evidence for primary defects in glucose transport and glycogen synthase activity. Diabetes 51:921–927

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Lertwattanarak R, Lefort N, Molina-Carrion M, Joya-Galeana J (2011) Reduction in reactive oxygen species production by mitochondria from elderly subjects with normal and impaired glucose tolerance. Diabetes 60:2051–2060

    Google Scholar 

  • Gianni P, Jan KJ, Douglas MJ, Stuart PM, Tarnopolsky MA (2004) Oxidative stress and the mitochondrial theory of aging in human skeletal muscle. Exp Gerontol 39:1391–1400

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    PubMed  CAS  Google Scholar 

  • Harman D (2009) Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009. Biogerontology 10:773–781

    Article  PubMed  CAS  Google Scholar 

  • Hornig-Do HT, Gunther G, Bust M, Lehnartz P, Bosio A et al (2009) Isolation of functional pure mitochondria by superparamagnetic microbeads. Anal Biochem 389:1–5

    Article  PubMed  CAS  Google Scholar 

  • Janero DR, Hreniuk D (1996) Suppression of TCA cycle activity in the cardiac muscle cell by hydroperoxide-induced oxidant stress. Am J Physiol 270:C1735–C1742

    PubMed  CAS  Google Scholar 

  • Kadi F, Ponsot E (2010) The biology of satellite cells and telomeres in human skeletal muscle: effects of aging and physical activity. Scand J Med Sci Sports 20:39–48

    Article  PubMed  CAS  Google Scholar 

  • Karakelides H, Irving BA, Short KR, O’Brien P, Nair KS (2010) Age, obesity, and sex effects on insulin sensitivity and skeletal muscle mitochondrial function. Diabetes 59:89–97

    Article  PubMed  CAS  Google Scholar 

  • Kent-Braun JA, Ng AV (2000) Skeletal muscle oxidative capacity in young and older women and men. J Appl Physiol 89:1072–1078

    PubMed  CAS  Google Scholar 

  • Lander HM (1997) An essential role for free radicals and derived species in signal transduction. FASEB J 11:118–124

    PubMed  CAS  Google Scholar 

  • Lanza IR, Befroy DE, Kent-Braun JA (2005) Age-related changes in ATP-producing pathways in human skeletal muscle in vivo. J Appl Physiol 99:1736–1744

    Article  PubMed  CAS  Google Scholar 

  • Lee HC, Wei YH (1997) Role of mitochondria in human aging. J Biomed Sci 4:319–326

    Article  PubMed  CAS  Google Scholar 

  • Lee HC, Wei YH (2001) Mitochondrial alterations, cellular response to oxidative stress and defective degradation of proteins in aging. Biogerontology 2:231–244

    Article  PubMed  CAS  Google Scholar 

  • Lee SM, Huh TL, Park JW (2001) Inactivation of NADP(+)-dependent isocitrate dehydrogenase by reactive oxygen species. Biochimie 83:1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Lee HC, Yin PH, Chi CW, Wei YH (2002) Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J Biomed Sci 9:517–526

    Article  PubMed  CAS  Google Scholar 

  • Minet AD, Gaster M (2010) ATP synthesis is impaired in isolated mitochondria from myotubes established from type 2 diabetic subjects. Biochem Biophys Res Commun 402:70–74

    Article  PubMed  CAS  Google Scholar 

  • Minet AD, Gaster M (2011a) The dynamic equilibrium between ATP synthesis and ATP consumption is lower in isolated mitochondria from myotubes established from type 2 diabetic subjects compared to lean control. Biochem Biophys Res Commun 409:591–595

    Article  PubMed  CAS  Google Scholar 

  • Minet D, Gaster M (2011b) Hydrogen peroxide production is not primarily increased in human myotubes established from type 2 diabetic subjects. J Clin Endocrinol Metab 96:E1486–E1490

    Google Scholar 

  • Narici MV, Maffulli N (2010) Sarcopenia: characteristics, mechanisms and functional significance. Br Med Bull 95:139–159

    Article  PubMed  CAS  Google Scholar 

  • Nehlin JO, Just M, Rustan AC, Gaster M (2011) Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism. Biogerontology 12:349–365

    Google Scholar 

  • Ortenblad N, Mogensen M, Petersen I, Hojlund K, Levin K et al (2005) Reduced insulin-mediated citrate synthase activity in cultured skeletal muscle cells from patients with type 2 diabetes: evidence for an intrinsic oxidative enzyme defect. Biochim Biophys Acta 1741:206–214

    PubMed  CAS  Google Scholar 

  • Papa S (1996) Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. Biochim Biophys Acta 1276:87–105

    Article  PubMed  Google Scholar 

  • Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C et al (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen UF, Krustrup P, Kjaer M, Rasmussen HN (2003a) Experimental evidence against the mitochondrial theory of aging. A study of isolated human skeletal muscle mitochondria. Exp Gerontol 38:877–886

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen UF, Krustrup P, Kjaer M, Rasmussen HN (2003b) Human skeletal muscle mitochondrial metabolism in youth and senescence: no signs of functional changes in ATP formation and mitochondrial oxidative capacity. Pflugers Arch 446:270–278

    PubMed  CAS  Google Scholar 

  • Roberts SB, Rosenberg I (2006) Nutrition and aging: changes in the regulation of energy metabolism with aging. Physiol Rev 86:651–667

    Article  PubMed  CAS  Google Scholar 

  • Rossi P, Marzani B, Giardina S, Negro M, Marzatico F (2008) Human skeletal muscle aging and the oxidative system: cellular events. Curr Aging Sci 1:182–191

    Article  PubMed  CAS  Google Scholar 

  • Sen CK, Packer L (1996) Antioxidant and redox regulation of gene transcription. FASEB J 10:709–720

    PubMed  CAS  Google Scholar 

  • Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J et al (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci USA 102:5618–5623

    Article  PubMed  CAS  Google Scholar 

  • Tahara EB, Navarete FD, Kowaltowski AJ (2009) Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic Biol Med 46:1283–1297

    Article  PubMed  CAS  Google Scholar 

  • Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G (2010) Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 120:11–19

    Article  PubMed  CAS  Google Scholar 

  • Tonkonogi M, Fernstrom M, Walsh B, Ji LL, Rooyackers O et al (2003) Reduced oxidative power but unchanged antioxidative capacity in skeletal muscle from aged humans. Pflugers Arch 446:261–269

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Lynfort I and Agergaard J provided excellent technical assistance. Højlund K and Levin K were thanked for muscle biopsies. The Danish Medical Research Council, the Novo Nordisk Foundation and the free research funds of Odense University Hospital were thanked for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gaster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minet, A.D., Gaster, M. Cultured senescent myoblasts derived from human vastus lateralis exhibit normal mitochondrial ATP synthesis capacities with correlating concomitant ROS production while whole cell ATP production is decreased. Biogerontology 13, 277–285 (2012). https://doi.org/10.1007/s10522-012-9372-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-012-9372-9

Keywords

Navigation