Skip to main content

Advertisement

Log in

Telomere dynamics during replicative senescence are not directly modulated by conditions of oxidative stress in IMR90 fibroblast cells

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The replicative lifespan of many cell types is determined by the length of telomeres in the initiating cell population. In 20% oxygen, IMR90 cells have a shorter replicative lifespan compared to that achieved in conditions that lower the levels of oxidative stress. We sought to address the role of telomere dynamics in determining the replicative lifespan of IMR90 cells. We analysed clonal populations cultured in parallel in 3 and 20% oxygen. We observed that, at senescence, telomere length was shorter in 3% oxygen and this was proportional to the lifespan extension. We observed no detectable difference in the rate of telomere erosion in the two culture conditions, however as the cells approached senescence the growth rate of the cultures slowed with a commensurate increase in the rate of telomere erosion. We conclude that, in 20% oxygen senescence of IMR90 is telomere-independent, but telomere-dependent in 3% oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allsopp RC et al (1995) Telomere shortening is associated with cell division in vitro and in vivo. Exp Cell Res 220:194–200. doi:10.1006/excr.1995.1306

    Article  CAS  PubMed  Google Scholar 

  • Ames BN (1999) Micronutrient deficiencies. A major cause of DNA damage. Ann N Y Acad Sci 889:87–106. doi:10.1111/j.1749-6632.1999.tb08727.x

    Article  CAS  PubMed  Google Scholar 

  • Atamna H, Paler-Martinez A, Ames BN (2000) n-t-butyl hydroxylamine, a hydrolysis product of alpha-phenyl-n-t-butyl nitrone, is more potent in delaying senescence in human lung fibroblasts. J Biol Chem 275:6741–6748. doi:10.1074/jbc.275.10.6741

    Article  CAS  PubMed  Google Scholar 

  • Baird DM (2005) New developments in telomere length analysis. Exp Gerontol 40:363–368. doi:10.1016/j.exger.2005.02.008

    Article  CAS  PubMed  Google Scholar 

  • Baird DM (2008) Telomere dynamics in human cells. Biochimie 90:116–121. doi:10.1016/j.biochi.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  • Baird DM, Rowson J, Wynford-Thomas D, Kipling D (2003) Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Genet 33:203–207. doi:10.1038/ng1084

    Article  CAS  PubMed  Google Scholar 

  • Baird DM, Davis T, Rowson J, Jones CJ, Kipling D (2004) Normal telomere erosion rates at the single cell level in Werner syndrome fibroblast cells. Hum Mol Genet 13:1515–1524. doi:10.1093/hmg/ddh159

    Article  CAS  PubMed  Google Scholar 

  • Baird DM, Britt-Compton B, Rowson J, Amso NN, Gregory L, Kipling D (2006) Telomere instability in the male germline. Hum Mol Genet 15:45–51. doi:10.1093/hmg/ddi424

    Article  CAS  PubMed  Google Scholar 

  • Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495. doi:10.1016/j.cell.2005.02.001

    Article  CAS  PubMed  Google Scholar 

  • Balin AK, Goodman DB, Rasmussen H, Cristofalo VJ (1977) The effect of oxygen and vitamin E on the lifespan of human diploid cells in vitro. J Cell Biol 74:58–67. doi:10.1083/jcb.74.1.58

    Article  CAS  PubMed  Google Scholar 

  • Blander G, de Oliveira RM, Conboy CM, Haigis M, Guarente L (2003) Superoxide dismutase 1 knock-down induces senescence in human fibroblasts. J Biol Chem 278:38966–38969. doi:10.1074/jbc.M307146200

    Article  CAS  PubMed  Google Scholar 

  • Bond J, Haughton M, Blaydes J, Gire V, Wynford-Thomas D, Wyllie F (1996) Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence. Oncogene 13:2097–2104

    CAS  PubMed  Google Scholar 

  • Britt-Compton B, Rowson J, Locke M, Mackenzie I, Kipling D, Baird DM (2006) Structural stability and chromosome-specific telomere length is governed by cis-acting determinants in humans. Hum Mol Genet 15:725–733. doi:10.1093/hmg/ddi486

    Article  CAS  PubMed  Google Scholar 

  • Capper R et al (2007) The nature of telomere fusion and a definition of the critical telomere length in human cells. Genes Dev 21:2495–2508. doi:10.1101/gad.439107

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN (1995) Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA 92:4337–4341. doi:10.1073/pnas.92.10.4337

    Article  CAS  PubMed  Google Scholar 

  • Chen QM, Prowse KR, Tu VC, Purdom S, Linskens MH (2001) Uncoupling the senescent phenotype from telomere shortening in hydrogen peroxide-treated fibroblasts. Exp Cell Res 265:294–303. doi:10.1006/excr.2001.5182

    Article  CAS  PubMed  Google Scholar 

  • Chepda T et al (2001) Synergy between ascorbate and alpha-tocopherol on fibroblasts in culture. Life Sci 69:1587–1596. doi:10.1016/S0024-3205(01)01240-1

    Article  CAS  PubMed  Google Scholar 

  • d’Adda di Fagagna F et al (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Article  PubMed  Google Scholar 

  • de Magalhaes JP, Chainiaux F, Remacle J, Toussaint O (2002) Stress-induced premature senescence in BJ and hTERT-BJ1 human foreskin fibroblasts. FEBS Lett 523:157–162

    Article  PubMed  Google Scholar 

  • Dumont P et al (2000) Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic Biol Med 28:361–373

    Article  CAS  PubMed  Google Scholar 

  • Dumont P et al (2001) Growth kinetics rather than stress accelerate telomere shortening in cultures of human diploid fibroblasts in oxidative stress-induced premature senescence. FEBS Lett 502:109–112

    Article  CAS  PubMed  Google Scholar 

  • Feldser DM, Greider CW (2007) Short telomeres limit tumor progression in vivo by inducing senescence. Cancer Cell 11:461–469

    Article  CAS  PubMed  Google Scholar 

  • Forsyth NR, Evans AP, Shay JW, Wright WE (2003) Developmental differences in the immortalization of lung fibroblasts by telomerase. Aging Cell 2:235–243

    Article  CAS  PubMed  Google Scholar 

  • Gorbunova V, Seluanov A, Pereira-Smith OM (2002) Expression of human telomerase (hTERT) does not prevent stress-induced senescence in normal human fibroblasts but protects the cells from stress-induced apoptosis and necrosis. J Biol Chem 277:38540–38549

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1999) Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic Res 31:261–272

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (2003) Oxidative stress in cell culture: an under-appreciated problem? FEBS Lett 540:3–6

    Article  CAS  PubMed  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    Article  CAS  PubMed  Google Scholar 

  • Harley CB, Vaziri H, Counter CM, Allsopp RC (1992) The telomere hypothesis of cellular aging. Exp Gerontol 27:375–382

    Article  CAS  PubMed  Google Scholar 

  • Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311:1257

    Article  CAS  PubMed  Google Scholar 

  • Kashino G et al (2003) Relief of oxidative stress by ascorbic acid delays cellular senescence of normal human and Werner syndrome fibroblast cells. Free Radic Biol Med 35:438–443

    Article  CAS  PubMed  Google Scholar 

  • Kill IR, Faragher RG, Lawrence K, Shall S (1994) The expression of proliferation-dependent antigens during the lifespan of normal and progeroid human fibroblasts in culture. J Cell Sci 107(Pt 2):571–579

    CAS  PubMed  Google Scholar 

  • McSharry BP, Jones CJ, Skinner JW, Kipling D, Wilkinson GW (2001) Human telomerase reverse transcriptase-immortalized MRC-5 and HCA2 human fibroblasts are fully permissive for human cytomegalovirus. J Gen Virol 82:855–863

    CAS  PubMed  Google Scholar 

  • Munro J, Steeghs K, Morrison V, Ireland H, Parkinson EK (2001) Human fibroblast replicative senescence can occur in the absence of extensive cell division and short telomeres. Oncogene 20:3541–3552

    Article  CAS  PubMed  Google Scholar 

  • Ouellette MM, Aisner DL, Savre-Train I, Wright WE, Shay JW (1999) Telomerase activity does not always imply telomere maintenance. Biochem Biophys Res Commun 254:795–803

    Article  CAS  PubMed  Google Scholar 

  • Packer L, Fuehr K (1977) Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 267:423–425

    Article  CAS  PubMed  Google Scholar 

  • Packer L, Smith JR (1974) Extension of the lifespan of cultured normal human diploid cells by vitamin E. Proc Natl Acad Sci USA 71:4763–4767

    Article  CAS  PubMed  Google Scholar 

  • Ramirez RD et al (2001) Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev 15:398–403

    Article  CAS  PubMed  Google Scholar 

  • Robles SJ, Adami GR (1998) Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16:1113–1123

    Article  CAS  PubMed  Google Scholar 

  • Rodier F, Kim SH, Nijjar T, Yaswen P, Campisi J (2005) Cancer and aging: the importance of telomeres in genome maintenance. Int J Biochem Cell Biol 37:977–990

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Hammond AT, Moses RE (1995) The effect of low oxygen tension on the in vitro-replicative life span of human diploid fibroblast cells and their transformed derivatives. Exp Cell Res 217:272–279

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    Article  CAS  PubMed  Google Scholar 

  • Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 91:10771–10778

    Article  CAS  PubMed  Google Scholar 

  • Thomas E et al (1997) Different kinetics of senescence in human fibroblasts and peritoneal mesothelial cells. Exp Cell Res 236:355–358

    Article  CAS  PubMed  Google Scholar 

  • von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344

    Article  Google Scholar 

  • von Zglinicki T, Saretzki G, Docke W, Lotze C (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 220:186–193

    Article  Google Scholar 

  • Yokoo S, Furumoto K, Hiyama E, Miwa N (2004) Slow-down of age-dependent telomere shortening is executed in human skin keratinocytes by hormesis-like-effects of trace hydrogen peroxide or by anti-oxidative effects of pro-vitamin C in common concurrently with reduction of intracellular oxidative stress. J Cell Biochem 93:588–597

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Cancer Research UK. DMB is a Cancer Research UK Senior Cancer Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan M. Baird.

Additional information

Bethan Britt-Compton and Fiona Wyllie contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Britt-Compton, B., Wyllie, F., Rowson, J. et al. Telomere dynamics during replicative senescence are not directly modulated by conditions of oxidative stress in IMR90 fibroblast cells. Biogerontology 10, 683–693 (2009). https://doi.org/10.1007/s10522-009-9216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-009-9216-4

Keywords

Navigation