Skip to main content

Advertisement

Log in

Aging leads to increased levels of protein O-linked N-acetylglucosamine in heart, aorta, brain and skeletal muscle in Brown-Norway rats

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Changes in the levels of O-linked N-acetyl-glucosamine (O-GlcNAc) on nucleocytoplasmic protein have been associated with a number of age-related diseases such as Alzheimer’s and diabetes; however, there is relatively little information regarding the impact of age on tissue O-GlcNAc levels. Therefore, the goal of this study was to determine whether senescence was associated with alterations in O-GlcNAc in heart, aorta, brain and skeletal muscle and if so whether there were also changes in the expression of enzymes critical in regulating O-GlcNAc levels, namely, O-GlcNAc transferase (OGT), O-GlcNAcase and glutamine:fructose-6-phosphate amidotransferase (GFAT). Tissues were harvested from 5- and 24-month old Brown-Norway rats; UDP-GlcNAc, a precursor of O-GlcNAc was assessed by HPLC, O-GlcNAc and OGT levels were assessed by immunoblot analysis and GFAT1/2, OGT, O-GlcNAcase mRNA levels were determined by RT-PCR. In the 24-month old animals serum insulin and triglyceride levels were significantly increased compared to the 5-month old group; however, glucose levels were unchanged. Protein O-GlcNAc levels were significantly increased with age (30–107%) in all tissues examined; however, paradoxically the expression of OGT, which catalyzes O-GlcNAc formation, was decreased by ∼30% in the heart, aorta and brain. In the heart increased O-GlcNAc was associated with increased UDP-GlcNAc levels and elevated GFAT mRNA while in other tissues we found no difference in UDP-GlcNAc or GFAT mRNA levels. These results demonstrate that senescence is associated with increased O-GlcNAc levels in multiple tissues and support the notion that dysregulation of pathways leading to O-GlcNAc formation may play an important role in the development of age-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AD:

Alzheimer disease

AP:

Chlatrin assembly protein

EC:

Excitation-contraction coupling

eNOS:

Endothelial nitrogen oxide synthase

FFA:

Free fatty acid

GFAT:

Glutamine: fructose-6-phosphate amidotransferase

GLUT:

Glucose transporter

GSK:

Glycogen synthase kinase

HBP:

Hexosamine biosynthesis pathway

HDL:

High density lipoprotein

IRS:

Insulin receptor substrate

O-GlcNAc:

O-linked N-acetylglucosamine

OGA:

N-acetylglycosidase, O-GlcNAc-ase

OGT:

O-glucoronyl transferase, O-GlcNAc transferase

PCA:

Perchloric acid

PUGNAc:

O-(2-Acetamido-2-deoxy-d-glucopyranosylidene)amino N-phenyl carbamate

STZ:

Streptozotocin

UDP-GalNAc:

Uridine diphospho-N-acetyl-galactosamine

UDP-GlcNAc:

Uridine diphospho-N-acetyl-glucosamine

UDP-HexNAc:

Uridine diphospho-N-acetyl-hexosamine

ZDF:

Zucker diabetic fatty

References

  • Akimoto Y, Hart GW, Wells L, Vosseller K, Yamamoto K, Munetomo E, Ohara-Imaizumi M, Nishiwaki C, Nagamatsu S, Hirano H and Kawakami H (2007) Elevation of the post-translational modification of proteins by O-linked N-acetylglucosamine leads to deterioration of the glucose-stimulated insulin secretion in the pancreas of diabetic Goto-Kakizaki rats. Glycobiology 17:127–140

    Article  CAS  PubMed  Google Scholar 

  • Arnold CS, Johnson GV, Cole RN, Dong DL, Lee M, Hart GW (1996) The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J Biol Chem 271:28741–28744

    Article  CAS  PubMed  Google Scholar 

  • Basu R, Breda E, Oberg AL, Powell CC, Dalla Man C, Basu A, Vittone JL, Klee GG, Arora P, Jensen MD, Toffolo G, Cobelli C, Rizza RA (2003) Mechanisms of the age-associated deterioration in glucose tolerance: contribution of alterations in insulin secretion, action, and clearance. Diabetes 52:1738–1748

    Article  CAS  PubMed  Google Scholar 

  • Burattini R, Di Nardo F, Boemi M, Fumelli P (2006) Deterioration of insulin sensitivity and glucose effectiveness with age and hypertension. Am J Hypertens 19:98–102

    Article  CAS  PubMed  Google Scholar 

  • Buse MG (2006) Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol Endocrinol Metab 290:E1–E8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang Q, Su K, Baker JR, Yang X, Paterson AJ, Kudlow JE (2000) Phosphorylation of human glutamine:fructose-6-phosphate amidotransferase by cAMP-dependent protein kinase at serine 205 blocks the enzyme activity. J Biol Chem 275:21981–21987

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Cole RN, Zaia J, Hart GW (2000) Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor beta. Biochemistry 39:11609–11620

    Article  CAS  PubMed  Google Scholar 

  • Chou TY, Hart GW, Dang CV (1995) c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. J Biol Chem 270:18961–18965

    Article  CAS  PubMed  Google Scholar 

  • Clark RJ, McDonough PM, Swanson E, Trost SU, Suzuki M, Fukuda M, Dillmann WH (2003) Diabetes and the accompanying hyperglycemia impairs cardiomyocyte cycling through increased nuclear O-GlcNAcylation. J Biol Chem 278:44230–44237

    Article  CAS  PubMed  Google Scholar 

  • Cole RN, Hart GW (1999) Glycosylation sites flank phosphorylation sites on synapsin I: O-linked N-acetylglucosamine residues are localized within domains mediating synapsin I interactions. J Neurochem 73:418–428

    Article  CAS  PubMed  Google Scholar 

  • Comer FI, Hart GW (2000) O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. J Biol Chem 275:29179–29182

    Article  CAS  PubMed  Google Scholar 

  • Davidoff AJ (2006) Convergence of glucose- and fatty acid-induced abnormal myocardial excitation-contraction coupling and insulin signalling. Clin Exp Pharmacol Physiol 33:152–158

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Li B, Liu F, Iqbal K, Grundke-Iqbal I, Brandt R and Gong CX (2008) Regulation between O-GlcNAcylation and phosphorylation of neurofilament-M and their dysregulation in Alzheimer disease. Faseb J 22:138–145

    Article  CAS  PubMed  Google Scholar 

  • Dong DL, Hart GW (1994) Purification and characterization of an O-GlcNAc selective N-acetyl-beta-D-glucosaminidase from rat spleen cytosol. J Biol Chem 269:19321–19330

    CAS  PubMed  Google Scholar 

  • Dong DL, Xu ZS, Chevrier MR, Cotter RJ, Cleveland DW, Hart GW (1993) Glycosylation of mammalian neurofilaments. Localization of multiple O-linked N-acetylglucosamine moieties on neurofilament polypeptides L and M. J Biol Chem 268:16679–16687

    CAS  PubMed  Google Scholar 

  • Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M (2001) Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 108:1341–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, Wu J, Brownlee M (2000) Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA 97:12222–12226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duverger E, Roche AC, Monsigny M (1996) N-acetylglucosamine-dependent nuclear import of neoglycoproteins. Glycobiology 6:381–386

    Article  CAS  PubMed  Google Scholar 

  • Federici M, Menghini R, Mauriello A, Hribal ML, Ferrelli F, Lauro D, Sbraccia P, Spagnoli LG, Sesti G, Lauro R (2002) Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells. Circulation 106:466–472

    Article  CAS  PubMed  Google Scholar 

  • Feely RS, Larkin LM, Halter JB, Dengel DR (2000) Chemical versus dual energy x-ray absorptiometry for detecting age-associated body compositional changes in male rats. Exp Gerontol 35:417–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulop N, Marchase RB, Chatham JC (2007a) Role of protein O-linked N-acetyl-glucosamine in mediating cell function and survival in the cardiovascular system. Cardiovasc Res 73:288–297

    Article  PubMed  Google Scholar 

  • Fulop N, Mason MM, Dutta K, Wang P, Davidoff AJ, Marchase RB, Chatham JC (2007b) Impact of Type 2 diabetes and aging on cardiomyocyte function and O-linked N-acetylglucosamine levels in the heart. Am J Physiol Cell Physiol 292:C1370–1378

    Article  CAS  PubMed  Google Scholar 

  • Fulop N, Zhang Z, Marchase RB, Chatham JC (2007c) Glucosamine cardioprotection in perfused rat hearts associated with increased O-linked N-acetylglucosamine protein modification and altered p38 activation. Am J Physiol Heart Circ Physiol 292:H2227–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Miyazaki J, Hart GW (2003) The transcription factor PDX-1 is post-translationally modified by O-linked N-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in min6 beta-cells. Arch Biochem Biophys 415:155–163

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Wells L, Comer FI, Parker GJ, Hart GW (2001) Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem 276:9838–9845

    Article  CAS  PubMed  Google Scholar 

  • Goldberg HJ, Whiteside CI, Hart GW, Fantus IG (2006) Posttranslational, reversible O-glycosylation is stimulated by high glucose and mediates plasminogen activator inhibitor-1 gene expression and Sp1 transcriptional activity in glomerular mesangial cells. Endocrinology 147:222–231

    Article  CAS  PubMed  Google Scholar 

  • Griffith LS, Mathes M, Schmitz B (1995) Beta-amyloid precursor protein is modified with O-linked N-acetylglucosamine. J Neurosci Res 41:270–278

    Article  CAS  PubMed  Google Scholar 

  • Haltiwanger RS, Blomberg MA, Hart GW (1992) Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine:polypeptide beta-N-acetylglucosaminyltransferase. J Biol Chem 267:9005–9013

    CAS  PubMed  Google Scholar 

  • Haltiwanger RS, Holt GD, Hart GW (1990) Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine:peptide beta-N-acetylglucosaminyltransferase. J Biol Chem 265:2563–2568

    CAS  PubMed  Google Scholar 

  • Han I, Roos MD, Kudlow JE (1998) Interaction of the transcription factor Sp1 with the nuclear pore protein p62 requires the C-terminal domain of p62. J Cell Biochem 68:50–61

    Article  CAS  PubMed  Google Scholar 

  • Hanover JA (2001) Glycan-dependent signaling: O-linked N-acetylglucosamine. FASEB J. 15:1865–1876

    Article  CAS  PubMed  Google Scholar 

  • Holt GD, Hart GW (1986) The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. J Biol Chem 261:8049–8057

    CAS  PubMed  Google Scholar 

  • Hu Y, Belke D, Suarez J, Swanson E, Clark R, Hoshijima M, Dillmann WH (2005) Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart. Circ Res 96:1006–1013

    Article  CAS  PubMed  Google Scholar 

  • Jackson RJ and Standart N (2007) How do microRNAs regulate gene expression? Sci STKE 2007:re1

  • James LR, Fantus IG, Goldberg H, Ly H, Scholey JW (2000) Overexpression of GFAT activates PAI-1 promoter in mesangial cells. Am J Physiol Renal Physiol 279:F718–F727

    CAS  PubMed  Google Scholar 

  • Kolm-Litty V, Sauer U, Nerlich A, Lehmann R, Schleicher ED (1998) High glucose-induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J Clin Invest 101:160–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornfeld R (1967) Studies on l-glutamine d-fructose 6-phosphate amidotransferase. I. Feedback inhibition by uridine diphosphate-N-acetylglucosamine. J Biol Chem 242:3135–3141

    CAS  PubMed  Google Scholar 

  • Kreppel LK, Blomberg MA, Hart GW (1997) Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem 272:9308–9315

    Article  CAS  PubMed  Google Scholar 

  • Kreppel LK, Hart GW (1999) Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J Biol Chem 274:32015–32022

    Article  CAS  PubMed  Google Scholar 

  • Lakatta EG (1993) Myocardial adaptations in advanced age. Basic Res Cardiol 88:125–133

    PubMed  Google Scholar 

  • Lefebvre T, Ferreira S, Dupont-Wallois L, Bussiere T, Dupire MJ, Delacourte A, Michalski JC, Caillet-Boudin ML (2003) Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins–a role in nuclear localization. Biochim Biophys Acta 1619:167–176

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Pang Y, Chang T, Bounelis P, Chatham JC, Marchase RB (2006) Increased hexosamine biosynthesis and protein O-GlcNAc levels associated with myocardial protection against calcium paradox and ischemia. J Mol Cell Cardiol 40:303–312

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Paterson AJ, Zhang F, McAndrew J, Fukuchi K, Wyss JM, Peng L, Hu Y, Kudlow JE (2004) Accumulation of protein O-GlcNAc modification inhibits proteasomes in the brain and coincides with neuronal apoptosis in brain areas with high O-GlcNAc metabolism. J Neurochem 89:1044–1055

    Article  CAS  PubMed  Google Scholar 

  • Love DC, Hanover JA (2005) The hexosamine signaling pathway: deciphering the “ O-GlcNAc code”. Sci STKE 2005:re13

    PubMed  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  • Marin J (1995) Age-related changes in vascular responses: a review. Mech Ageing Dev 79:71–114

    Article  CAS  PubMed  Google Scholar 

  • Marshall S, Okuyama R, Rumberger JM (2005) Turnover and characterization of UDP-N-acetylglucosaminyl transferase in a stably transfected HeLa cell line. Biochem Biophys Res Commun 332:263–270

    Article  CAS  PubMed  Google Scholar 

  • Pang Y, Bounelis P, Chatham JC, Marchase RB (2004) The hexosamine pathway is responsible for the inhibition by diabetes of phenylephrine-induced inotropy. Diabetes 53:1074–1081

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Ryu J, Lee W (2005) O-GlcNAc modification on IRS-1 and Akt2 by PUGNAc inhibits their phosphorylation and induces insulin resistance in rat primary adipocytes. Exp Mol Med 37:220–229

    Article  CAS  PubMed  Google Scholar 

  • Pausova Z, Sedova L, Berube J, Hamet P, Tremblay J, Dumont M, Gaudet D, Pravenec M, Kren V, Kunes J (2003) Segment of rat chromosome 20 regulates diet-induced augmentations in adiposity, glucose intolerance, and blood pressure. Hypertension 41:1047–1055

    Article  CAS  PubMed  Google Scholar 

  • Rex-Mathes M, Werner S, Strutas D, Griffith LS, Viebahn C, Thelen K, Schmitz B (2001) O-GlcNAc expression in developing and ageing mouse brain. Biochimie 83:583–590

    Article  CAS  PubMed  Google Scholar 

  • Robinson KA, Weinstein ML, Lindenmayer GE, Buse MG (1995) Effects of diabetes and hyperglycemia on the hexosamine synthesis pathway in rat muscle and liver. Diabetes 44:1438–1446

    Article  CAS  PubMed  Google Scholar 

  • Roos MD, Su K, Baker JR, Kudlow JE (1997) O glycosylation of an Sp1-derived peptide blocks known Sp1 protein interactions. Mol Cell Biol 17:6472–6480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Schweda S, Holubarsch C (2000) First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin Sci (Lond) 99:27–35

    Article  CAS  Google Scholar 

  • Slawson C, Housley MP, Hart GW (2006) O-GlcNAc cycling: How a single sugar post-translational modification is changing the Way We think about signaling networks. J Cell Biochem 97:71–83

    Article  CAS  PubMed  Google Scholar 

  • Torres CR, Hart GW (1984) Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J Biol Chem 259:3308–3317

    CAS  PubMed  Google Scholar 

  • Traxinger RR, Marshall S (1991) Coordinated regulation of glutamine: fructose-6-phosphate amidotransferase activity by insulin, glucose, and glutamine. Role of hexosamine biosynthesis in enzyme regulation. J Biol Chem 266:10148–10154

    CAS  PubMed  Google Scholar 

  • Vosseller K, Sakabe K, Wells L, Hart GW (2002a) Diverse regulation of protein function by O-GlcNAc: a nuclear and cytoplasmic carbohydrate post-translational modification. Curr Opin Chem Biol 6:851–857

    Article  CAS  PubMed  Google Scholar 

  • Vosseller K, Wells L, Lane MD, Hart GW (2002b) Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 99:5313–5318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker EM Jr., Nillas MS, Mangiarua EI, Cansino S, Morrison RG, Perdue RR, Triest WE, Wright GL, Studeny M, Wehner P, Rice KM, Blough ER (2006) Age-associated changes in hearts of male Fischer 344/Brown Norway F1 rats. Ann Clin Lab Sci 36:427–438

    PubMed  Google Scholar 

  • Wang E (2007) MicroRNA, the putative molecular control for mid-life decline. Ageing Res Rev 6:1–11

    Article  PubMed  Google Scholar 

  • Wang P, Chatham JC (2004) The onset of diabetes in Zucker diabetic fatty (ZDF) rats leads to improved recovery of function following ischemia in the isolated perfused heart. Am J Physiol Endocrin Met 286:E725–E736

    Article  CAS  Google Scholar 

  • Wells L, Vosseller K, Hart GW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291:2376–2378

    Article  CAS  PubMed  Google Scholar 

  • Wells L, Whalen SA, Hart GW (2003) O-GlcNAc: a regulatory post-translational modification. Biochem Biophys Res Commun 302:435–441

    Article  CAS  PubMed  Google Scholar 

  • Whelan SA, Hart GW (2003) Proteomic approaches to analyze the dynamic relationships between nucleocytoplasmic protein glycosylation and phosphorylation. Circ Res 93:1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Whisenhunt TR, Yang X, Bowe DB, Paterson AJ, Van Tine BA and Kudlow JE (2006) Disrupting the enzyme complex regulating O-GlcNAcylation blocks signaling and development. Glycobiology 16:551–563

    Article  CAS  PubMed  Google Scholar 

  • Wolden-Hanson T, Marck BT, Smith L, Matsumoto AM (1999) Cross-sectional and longitudinal analysis of age-associated changes in body composition of male Brown Norway rats: association of serum leptin levels with peripheral adiposity. J Gerontol A Biol Sci Med Sci 54:B99–107

    Article  CAS  PubMed  Google Scholar 

  • Yao PJ, Coleman PD (1998a) Reduced O-glycosylated clathrin assembly protein AP180: implication for synaptic vesicle recycling dysfunction in Alzheimer’s disease. Neurosci Lett 252:33–36

    Article  CAS  PubMed  Google Scholar 

  • Yao PJ, Coleman PD (1998b) Reduction of O-linked N-acetylglucosamine-modified assembly protein-3 in Alzheimer’s disease. J Neurosci 18:2399–2411

    CAS  PubMed  Google Scholar 

  • Yin FC, Spurgein HA, Rakusan K, Weisfeldt ML, Lakatta EG (1982) Use of tibial length to quantify cardiac hypertrophy: applications in the aging rat. Am J Physiol 243:H941-H947

    CAS  PubMed  Google Scholar 

  • Young ME, Yan J, Razeghi P, Cooksey RC, Guthrie PH, Stepkowski SM, McClain DA, Tian R, Taegtmeyer H (2007) Proposed regulation of gene expression by glucose in rodent heart. Gene Reg Sys Biol 1:251–262

    Google Scholar 

  • Zachara NE, Hart GW (2004) O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim Biophys Acta 1673:13–28

    Article  CAS  PubMed  Google Scholar 

  • Zachara NE, Hart GW (2006) Cell signaling, the essential role of O-GlcNAc! Biochim Biophys Acta 1761:599–617

    Article  CAS  PubMed  Google Scholar 

  • Zachara NE, O’Donnell N, Cheung WD, Mercer JJ, Marth JD, Hart GW (2004) Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem 279:30133–30142

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Herman B (2002) Ageing and apoptosis. Mech Ageing Dev 123:245–260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NHLBI HL-076175 (RBM); HL-67464 and HL079364 (JCC) and HL-077100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Chatham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fülöp, N., Feng, W., Xing, D. et al. Aging leads to increased levels of protein O-linked N-acetylglucosamine in heart, aorta, brain and skeletal muscle in Brown-Norway rats. Biogerontology 9, 139–151 (2008). https://doi.org/10.1007/s10522-007-9123-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-007-9123-5

Keywords

Navigation