Skip to main content

Advertisement

Log in

Thymic output, ageing and zinc

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The role of the thymus is vital for orchestration of T-cell development and maturation. With increasing age the thymus undergoes a process of involution which results in a reduction in thymic size, function and output. Until relatively recent it was not feasible to accurately measure the magnitude of age-related loss of thymic function. With the discovery of T-cell receptor excision circles (TRECs), which are the stable by-products of the newly generated T-cells, it is now possible to quantitatively measure the extent of thymic output. This review examines the available data on immune function and zinc deficiency and places them in the context of the aims of the ZINCAGE project which include the evaluation of the role played by zinc in maintaining thymic output in healthy elderly individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akita S, Malkin J, Melmed S (1996) Disrupted murine leukemia inhibitory factor (LIF) gene attenuates adrenocorticotropic hormone (ACTH) secretion. Endocrinology 137:3140–3143

    Article  PubMed  CAS  Google Scholar 

  • Al-Harthi L, Marchetti G, Steffens CM, Poulin J, Sekaly R, Landay A (2000) Detection of T cell receptor circles (TRECs) as biomarkers for de novo T cell synthesis using a quantitative polymerase chain reaction-enzyme linked immunosorbent assay (PCR-ELISA). J Immunol Methods 237:187–197

    Article  PubMed  CAS  Google Scholar 

  • Andrew D, Aspinall R (2001) Il-7 and not stem cell factor reverses both the increase in apoptosis and the decline in thymopoiesis seen in aged mice. J Immunol 166:1524–1530

    PubMed  CAS  Google Scholar 

  • Andrew D, Aspinall R (2002) Age-associated thymic atrophy is linked to a decline in IL-7 production. Exp Gerontol 37:455–463

    Article  PubMed  CAS  Google Scholar 

  • Aquino VM, Douek DC, Berryman B, Johnson M, Jain VK, Collins RH (2003) Evaluation of thymic output by measurement of T-cell-receptor gene rearrangement excisional circles (TREC) in patients who have received fludarabine. Leuk Lymphoma 44:343–348

    Article  PubMed  Google Scholar 

  • Arellano MV, Ordonez A, Ruiz-Mateos E, Leal-Noval SR, Molina-Pinelo S, Hernandez A, Vallejo A, Hinojosa R, Leal M (2006) Thymic function-related markers within the thymus and peripheral blood: Are they comparable? J Clin Immunol 26:96–100

    Article  PubMed  Google Scholar 

  • Aronson M (1991) Hypothesis: involution of the thymus with aging–programmed and beneficial. Thymus 18:7–13

    PubMed  CAS  Google Scholar 

  • Aspinall R (1997) Age-associated thymic atrophy in the mouse is due to a deficiency affecting rearrangement of the TCR during intrathymic T cell development. J Immunol 158:3037–3045

    PubMed  CAS  Google Scholar 

  • Aspinall R, Carroll J, Jiang S (1998) Age-related changes in the absolute number of CD95 positive cells in T cell subsets in the blood. Exp Gerontol 33:581–591

    Article  PubMed  CAS  Google Scholar 

  • Bell EB, Sparshott SM (1990) Interconversion of CD45R subsets of CD4 T cells in vivo. Nature 348:163–166

    Article  PubMed  CAS  Google Scholar 

  • Belshe RB, Newman FK, Cannon J, Duane C, Treanor J, Van Hoecke C, Howe BJ, Dubin G (2004) Serum antibody responses after intradermal vaccination against influenza. N Engl J Med 351:2286–2294

    Article  PubMed  CAS  Google Scholar 

  • Berner YN, Lang R, Chowers MY (2002) Outcome of West Nile fever in older adults. J Am Geriatr Soc 50:1844–1846

    Article  PubMed  Google Scholar 

  • Bui T, Dykers T, Hu SL, Faltynek CR, Ho RJ (1994) Effect of MTP-PE liposomes and interleukin-7 on induction of antibody and cell-mediated immune responses to a recombinant HIV-envelope protein. J Acquir Immune Defic Syndr 7:799–806

    PubMed  CAS  Google Scholar 

  • Capone M, Hockett RD, Jr, Zlotnik A (1998) Kinetics of T cell receptor beta, gamma, and delta rearrangements during adult thymic development: T cell receptor rearrangements are present in CD44(+)CD25(+) Pro-T thymocytes. Proc Natl Acad Sci USA 95:12522–12527

    Google Scholar 

  • Chesters JK, Petrie L, Lipson KE (1993) Two zinc-dependent steps during G1 to S phase transition. J Cell Physiol 155:445–451

    Article  PubMed  CAS  Google Scholar 

  • Douek DC, Koup RA (2000a) Evidence for thymic function in the elderly. Vaccine 18:1638–1641

    Article  CAS  Google Scholar 

  • Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, Polis MA, Haase AT, Feinberg MB, Sullivan JL, Jamieson BD, Zack JA, Picker LJ, Koup RA (1998) Changes in thymic function with age and during the treatment of HIV infection. Nature 396:690–695

    Article  PubMed  CAS  Google Scholar 

  • Douek DC, Vescio RA, Betts MR, Brenchley JM, Hill BJ, Zhang L, Berenson JR, Collins RH, Koup RA (2000b) Assessment of thymic output in adults after haematopoietic stem-cell transplantation and prediction of T-cell reconstitution. Lancet 355:1875–1881

    Article  CAS  Google Scholar 

  • Effros RB, Dagarag M, Spaulding C, Man J (2005) The role of CD8+ T-cell replicative senescence in human aging. Immunol Rev 205:147–157

    Article  PubMed  CAS  Google Scholar 

  • Effros RB, Pawelec G (1997) Replicative senescence of T cells: does the Hayflick Limit lead to immune exhaustion? Immunol Today 18:450–454

    Article  PubMed  CAS  Google Scholar 

  • Fehling HJ, von Boehmer H (1997) Early alpha beta T cell development in the thymus of normal and genetically altered mice. Curr Opin Immunol 9:263–275

    Article  PubMed  CAS  Google Scholar 

  • Fraker PJ, King LE (2004) Reprogramming of the immune system during zinc deficiency. Annu Rev Nutr 24:277–298

    Article  PubMed  CAS  Google Scholar 

  • Fraker PJ, King LE, Laakko T, Vollmer TL (2000) The dynamic link between the integrity of the immune system and zinc status. J Nutr 130:1399S–1406S

    PubMed  CAS  Google Scholar 

  • Fry TJ, Mackall CL (2002) Current concepts of thymic aging Springer. Semin Immunopathol 24:7–22

    Article  Google Scholar 

  • George AJ, Ritter MA (1996) Thymic involution with ageing: obsolescence or good housekeeping? Immunol Today 17:267–272

    Article  PubMed  CAS  Google Scholar 

  • Godfrey DI, Kennedy J, Mombaerts P, Tonegawa S, Zlotnik A (1994) Onset of TCR-beta gene rearrangement and role of TCR-beta expression during CD3−CD4−CD8− thymocyte differentiation. J Immunol 152:4783–4792

    PubMed  CAS  Google Scholar 

  • Godfrey DI, Kennedy J, Suda T, Zlotnik A (1993) A developmental pathway involving four phenotypically and functionally distinct subsets of CD3−CD4−CD8− triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol 150:4244–4252

    PubMed  CAS  Google Scholar 

  • Hannoun C, Megas F, Piercy J (2004) Immunogenicity and protective efficacy of influenza vaccination. Virus Res 103:133–138

    Article  PubMed  CAS  Google Scholar 

  • Hartwig M, Steinmann G (1994) On a causal mechanism of chronic thymic involution in man. Mech Ageing Dev 75:151–156

    Article  PubMed  CAS  Google Scholar 

  • Hassan J, Reen DJ (1998) IL-7 promotes the survival and maturation but not differentiation of human post-thymic CD4 + T cells. Eur J Immunol 28:3057–3065

    Article  PubMed  CAS  Google Scholar 

  • Haynes BF, Hale LP, Weinhold KJ, Patel DD, Liao HX, Bressler PB, Jones DM, Demarest JF, Gebhard-Mitchell K, Haase AT, Bartlett JA (1999) Analysis of the adult thymus in reconstitution of T lymphocytes in HIV-1 infection. J Clin Invest 103:453–460

    PubMed  CAS  Google Scholar 

  • Haynes BF, Markert ML, Sempowski GD, Patel DD, Hale LP (2000a) The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Annu Rev Immunol 18:529–560

    Article  CAS  Google Scholar 

  • Haynes BF, Sempowski GD, Wells AF, Hale LP (2000b) The human thymus during aging. Immunol Res 22:253–261

    Article  CAS  Google Scholar 

  • Henson SM, Snelgrove R, Hussell T, Wells DJ, Aspinall R (2005) An IL-7 fusion protein that shows increased thymopoietic ability. J Immunol 175:4112–4118

    PubMed  CAS  Google Scholar 

  • Hirokawa K, Sato K, Makinodan T (1982) Influence of age of thymic grafts on the differentiation of T cells in nude mice. Clin Immunol Immunopathol 24:251–262

    Article  PubMed  CAS  Google Scholar 

  • Hochberg EP, Chillemi AC, Wu CJ, Neuberg D, Canning C, Hartman K, Alyea EP, Soiffer RJ, Kalams SA, Ritz J (2001) Quantitation of T-cell neogenesis in vivo after allogeneic bone marrow transplantation in adults. Blood 98:1116–1121

    Article  PubMed  CAS  Google Scholar 

  • Hosseinzadeh H, Goldschneider I (1993) Recent thymic emigrants in the rat express a unique antigenic phenotype and undergo post-thymic maturation in peripheral lymphoid tissues. J Immunol 150:1670–1679

    PubMed  CAS  Google Scholar 

  • Imami N, Aspinall R, Gotch F (2000) Role of the thymus in T lymphocyte reconstitution. Transplantation 69:2238–2239

    Article  PubMed  CAS  Google Scholar 

  • Kadish JL, Basch RS (1976) Hematopoietic thymocyte precursors. I. Assay and kinetics of the appearance of progeny J Exp Med 143:1082–1099

    Article  PubMed  CAS  Google Scholar 

  • Keen CL, Gershwin ME (1990) Zinc deficiency and immune function. Annu Rev Nutr 10:415–431

    Article  PubMed  CAS  Google Scholar 

  • Kong F, Chen CH, Cooper MD (1998) Thymic function can be accurately monitored by the level of recent T cell emigrants in the circulation. Immunity 8:97–104

    Article  PubMed  CAS  Google Scholar 

  • Kong FK, Chen CL, Six A, Hockett RD, Cooper MD (1999) T cell receptor gene deletion circles identify recent thymic emigrants in the peripheral. T cell pool Proc Natl Acad Sci USA 96:1536–1540

    Article  CAS  Google Scholar 

  • Leiner H, Greinert U, Scheiwe W, Bathmann R, Muller-Hermelink HK (1984) Repopulation of lymph nodes and spleen in thymus chimeras after lethal irradiation and bone marrow transplantation: dependence on the age of the thymus. Immunobiology 167:345–358

    PubMed  CAS  Google Scholar 

  • Leposavic G, Obradovic S, Kosec D, Pejcic-Karapetrovic B, Vidic-Dankovic B (2001) In vivo modulation of the distribution of thymocyte subsets by female sex steroid hormones. Int Immunopharmacol 1:1–12

    Article  PubMed  CAS  Google Scholar 

  • Livak F, Schatz DG (1996) T-cell receptor alpha locus V(D)J recombination by-products are abundant in thymocytes and mature T cells. Mol Cell Biol 16:609–618

    PubMed  CAS  Google Scholar 

  • Looney RJ, Hasan MS, Coffin D, Campbell D, Falsey AR, Kolassa J, Agosti JM, Abraham GN, Evans TG (2001) Hepatitis B immunization of healthy elderly adults: relationship between naive CD4 + T cells and primary immune response and evaluation of GM-CSF as an adjuvant. J Clin Immunol 21:30–36

    Article  PubMed  CAS  Google Scholar 

  • Mocchegiani E, Fabris N (1995) Age-related thymus involution: zinc reverses in vitro the thymulin secretion defect. Int J Immunopharmacol 17:745–749

    Article  PubMed  CAS  Google Scholar 

  • Nash D, Mostashari F, Fine A, Miller J, O’Leary D, Murray K, Huang A, Rosenberg A, Greenberg A, Sherman M, Wong S, Layton M (2001) The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med 344:1807–1814

    Article  PubMed  CAS  Google Scholar 

  • Nasi M, Troiano L, Lugli E, Pinti M, Ferraresi R, Monterastelli E, Mussi C, Salvioli G, Franceschi C, Cossarizza A (2006) Thymic output and functionality of the IL-7/IL-7 receptor system in centenarians: implications for the neolymphogenesis at the limit of human life. Aging Cell 5:167–175

    Article  PubMed  CAS  Google Scholar 

  • O’Halloran TV (1993) Transition metals in control of gene expression. Science 261:715–725

    Article  PubMed  CAS  Google Scholar 

  • Oleske JM, Westphal ML, Shore S, Gorden D, Bogden JD, Nahmias A (1979) Zinc therapy of depressed cellular immunity in acrodermatitis enteropathica. Its correction. Am J Dis Child 133:915–918

    CAS  Google Scholar 

  • Olsen NJ, Kovacs WJ (2001) Effects of androgens on T and B lymphocyte development. Immunol Res 23:281–288

    Article  PubMed  CAS  Google Scholar 

  • Olsen NJ, Viselli SM, Fan J, Kovacs WJ (1998) Androgens accelerate thymocyte apoptosis. Endocrinology 139:748–752

    Article  PubMed  CAS  Google Scholar 

  • Pawelec G, Adibzadeh M, Solana R, Beckman I (1997) The T cell in the ageing individual. Mech Ageing Dev 93:35–45

    Article  PubMed  CAS  Google Scholar 

  • Pawelec G, Akbar A, Caruso C, Effros R, Grubeck-Loebenstein B, Wikby A (2004) Is immunosenescence infectious? Trends Immunol 25:406–410

    Article  PubMed  CAS  Google Scholar 

  • Penit C, Vasseur F (1997) Expansion of mature thymocyte subsets before emigration to the periphery. J Immunol 159:4848–4856

    PubMed  CAS  Google Scholar 

  • Petrie HT, Livak F, Schatz DG, Strasser A, Crispe IN, Shortman K (1993) Multiple rearrangements in T cell receptor alpha chain genes maximize the production of useful thymocytes. J Exp Med 178:615–622

    Article  PubMed  CAS  Google Scholar 

  • Phillips JA, Brondstetter TI, English CA, Lee HE, Virts EL, Thoman ML (2004) IL-7 gene therapy in aging restores early thymopoiesis without reversing involution. J Immunol 173:4867–4874

    PubMed  CAS  Google Scholar 

  • Poulin JF, Viswanathan MN, Harris JM, Komanduri KV, Wieder E, Ringuette N, Jenkins M, McCune JM, Sekaly RP (1999) Direct evidence for thymic function in adult humans. J Exp Med 190:479–486

    Article  PubMed  CAS  Google Scholar 

  • Prasad AS (1985) Clinical, endocrinological and biochemical effects of zinc deficiency. Clin Endocrinol Metab 14:567–589

    Article  PubMed  CAS  Google Scholar 

  • Prasad AS (1998) Zinc and immunity. Mol Cell Biochem 188:63–69

    Article  PubMed  CAS  Google Scholar 

  • Prasad AS, Halsted JA, Nadimi M (1961) Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med 31:532–546

    Article  PubMed  CAS  Google Scholar 

  • Prasad AS, Meftah S, Abdallah J, Kaplan J, Brewer GJ, Bach JF, Dardenne M (1988) Serum thymulin in human zinc deficiency. J Clin Invest 82:1202–1210

    Article  PubMed  CAS  Google Scholar 

  • Prasad AS, Miale A, Jr., Farid Z, Sandstead HH, Schulert AR (1963) Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypognadism. J Lab Clin Med 61:537–1549

    Google Scholar 

  • Schmader K (2001) Herpes zoster in older adults. Clin Infect Dis 32:1481–1486

    Article  PubMed  CAS  Google Scholar 

  • Sempowski GD, Hale LP, Sundy JS, Massey JM, Koup RA, Douek DC, Patel DD, Haynes BF (2000) Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy. J Immunol 164:2180–2187

    PubMed  CAS  Google Scholar 

  • Sfikakis PP, Kostomitsopoulos N, Kittas C, Stathopoulos J, Karayannacos P, Dellia-Sfikakis A, Mitropoulos D (1998) Tamoxifen exerts testosterone-dependent and independent effects on thymic involution. Int J Immunopharmacol 20:305–312

    Article  PubMed  CAS  Google Scholar 

  • Shortman K, Wu L (1996) Early T lymphocyte progenitors. Annu Rev Immunol 14:29–47

    Article  PubMed  CAS  Google Scholar 

  • Steinmann GG (1986) Changes in the human thymus during aging. Curr Top Pathol 75:43–88

    PubMed  CAS  Google Scholar 

  • Steinmann GG, Klaus B, Muller-Hermelink HK (1985) The involution of the ageing human thymic epithelium is independent of puberty. A morphometric study. Scand J Immunol 22:563–575

    Article  CAS  Google Scholar 

  • Taub DD, Longo DL (2005) Insights into thymic aging and regeneration. Immunol Rev 205:72–93

    Article  PubMed  CAS  Google Scholar 

  • Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, Anderson LJ, Fukuda K (2003) Mortality associated with influenza and respiratory syncytial virus in the United States. Jama 289:179–186

    Article  PubMed  Google Scholar 

  • Tian YM, Li PP, Jiang XF, Zhang GY, Dai YR (2001) Rejuvenation of degenerative thymus by oral melatonin administration and the antagonistic action of melatonin against hydroxyl radical-induced apoptosis of cultured thymocytes in mice. J Pineal Res 31:214–221

    Article  PubMed  CAS  Google Scholar 

  • Tian YM, Tian HJ, Zhang GY, Dai YR (2003) Effects of Ginkgo biloba extract (EGb 761) on hydroxyl radical-induced thymocyte apoptosis and on age-related thymic atrophy and peripheral immune dysfunctions in mice. Mech Ageing Dev 124:977–983

    Article  PubMed  Google Scholar 

  • Tyan ML (1977) Age-related decrease in mouse T cell progenitors. J Immunol. 118:846–851

    PubMed  CAS  Google Scholar 

  • Utsuyama M, Kasai M, Kurashima C, Hirokawa K (1991) Age influence on the thymic capacity to promote differentiation of T cells: induction of different composition of T cell subsets by aging thymus. Mech Ageing Dev 58:267–277

    Article  PubMed  CAS  Google Scholar 

  • Virts EL, Phillips JA, Thoman ML (2006) A novel approach to thymic rejuvenation in the aged Rejuvenation Res 9:134–142

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Li CL, Shortman K (1996) Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J Exp Med 184:903–911

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Scollay R, Egerton M, Pearse M, Spangrude GJ, Shortman K (1991) CD4 expressed on earliest T-lineage precursor cells in the adult murine thymus. Nature 349:71–74

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284:555–556

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Lewin SR, Markowitz M, Lin HH, Skulsky E, Karanicolas R, He Y, Jin X, Tuttleton S, Vesanen M, Spiegel H, Kost R, van Lunzen J, Stellbrink HJ, Wolinsky S, Borkowsky W, Palumbo P, Kostrikis LG, Ho DD (1999) Measuring recent thymic emigrants in blood of normal and HIV-1-infected individuals before and after effective therapy. J Exp Med 190:725–732

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the authors laboratory is supported by BBSRC (grant 16279) and the EU Zincage project (contract no. FOOD-CT-2003-506850).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne A Mitchell.

Additional information

Presented at the ZincAge Conference, Madrid, February 10–13, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, W.A., Meng, I., Nicholson, S.A. et al. Thymic output, ageing and zinc. Biogerontology 7, 461–470 (2006). https://doi.org/10.1007/s10522-006-9061-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-006-9061-7

Keywords

Navigation