Skip to main content
Log in

Genetic Basis Underlying Behavioral Correlation Between Fugu Takifugu rubripes and a Closely Related Species, Takifugu niphobles

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Correlated suits of behaviors (behavioral syndrome) are commonly observed in both inter- and intraspecific studies. In order to understand the genetic basis of such a correlation between species, we compared ten behaviors classified into five categories (acclimation, feeding, normal swimming, reaction to a novel object and activity in a novel environment) between two pufferfish species, Takifugu rubripes and T. niphobles. The two species showed consistent differences in nine behaviors with a significant correlation among behaviors. Quantitative trait locus (QTL) analysis using second generation hybrids revealed that different sets of small effect QTL are associated with the observed interspecific behavioral disparity. This indicates that correlations in temperament traits between them are governed by many genes with small effects, and each behavior has been selected to form particular combination patterns. One of the QTL showing small pleiotropic effect includes the Drd4 gene known for its association with behavioral traits in some animal taxa including mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achiha H (2006) Catch depth of ocellate puffer Takifugu rubripes and water temperature in the western Enshu Nada. Suisan Zoshoku 54:25–29

    Google Scholar 

  • Adriaenssens B, Johnsson JI (2013) Natural selection, plasticity and the emergence of a behavioural syndrome in the wild. Ecol Lett 16:47–55

    Article  PubMed  Google Scholar 

  • Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke MD, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith SF, Clark MS, Edwards YJ, Doggett N, Zharkikh A, Tavtigian SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310

    Article  PubMed  Google Scholar 

  • Arends D, Prins P, Jansen RC, Broman KW (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26:2990–2992

    Article  PubMed Central  PubMed  Google Scholar 

  • Bell AM (2007) Future directions in behavioural syndromes research. Proc R Soc B Biol Sci 274:755–761

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Biro PA, Stamps JA (2008) Are animal personality traits linked to life-history productivity? Trends Ecol Evol 23:361–368

    Article  PubMed  Google Scholar 

  • Boehmler W, Carr T, Thisse C, Thisse B, Canfield VA, Levenson R (2007) D4 Dopamine receptor genes of zebrafish and effects of the antipsychotic clozapine on larval swimming behaviour. Genes Brain Behav 6:155–166

    Article  PubMed  Google Scholar 

  • Brenner S, Elgar G, Sandford R, Macrae A, Venkatesh B, Aparicio S (1993) Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 366:265–268

    Article  PubMed  Google Scholar 

  • Brodin T, Johansson F (2004) Conflicting selection pressures on the growth/predation risk trade-off in a damselfly. Ecology 85:2927–2932

    Article  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  Google Scholar 

  • Carter AJ, Feeney WE (2012) Taking a comparative approach: analysing personality as a multivariate behavioural response across species. PLoS One 7:e42440

    Article  PubMed Central  PubMed  Google Scholar 

  • Christoffels A, Chia J, Koh E, Aparicio S, Brenner S, Venkatesh B (2004) Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21:1146–1151

    Article  PubMed  Google Scholar 

  • Ducrest AL, Keller L, Roulin A (2008) Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol Evol 23:502–510

    Article  PubMed  Google Scholar 

  • Dulawa SC, Grandy DK, Low MJ, Paulus MP, Geyer MA (1999) Dopamine D4 receptor-knock-out mice exhibit reduced exploration of novel stimuli. J Neurosci 19:9550–9556

    PubMed  Google Scholar 

  • Fidler AE, van Oers K, Drent PJ, Kuhn S, Mueller JC, Kempenaers B (2007) Drd4 gene polymorphisms are associated with personality variation in a passerine bird. Proc R Soc B 274:1685–1691

    Article  PubMed Central  PubMed  Google Scholar 

  • Gutiérrez-Gil B, Ball N, Burton D, Haskell M, Williams JL, Wiener P (2008) Identification of quantitative trait loci affecting cattle temperament. J Heredity 99:629–638

    Article  Google Scholar 

  • Hosoya S, Kai W, Fujita M, Miyaki K, Suetake H, Suzuki Y, Kikuchi K (2013a) The genetic architecture of growth rate in juvenile Takifugu species. Evolution 67:590–598

    Article  PubMed  Google Scholar 

  • Hosoya S, Kido S, Hirabayashi Y, Kai W, Kinami R, Yoshinaga T, Ogawa K, Suetake H, Kikuchi K, Suzuki Y (2013b) Genomic regions of pufferfishes responsible for host specificity of a monogenean parasite Heterobothrium okamotoi. Int J Parasitol 43:909–915

    Article  PubMed  Google Scholar 

  • Ingley SJ, Johnson JB (2014) Animal personality as a driver of reproductive isolation. Trends Ecol Evol 29:369–371

    Article  PubMed  Google Scholar 

  • Ito M, Kojima K, Tagawa M (1998) Migration of adult ocellate puffer Takifugu rubripes estimated from result of tagging and releasing experiment in Wakasa Bay, Fukui Prefecture, Japan. Nippon Suisan Gakk 64:435–439

  • Ito H, Nara H, Inoue-Murayama M, Shimada MK, Koshimura A, Ueda Y, Kitagawa H, Takeuchi Y, Mori Y, Murayama Y, Morita M, Iwasaki T, Ota K, Tanabe Y, Ito S (2004) Allele frequency distribution of the canine dopamine receptor D4 gene exon III and I in 23 breeds. J Vet Med Sci 66:815–820

    Article  PubMed  Google Scholar 

  • Kai W, Kikuchi K, Fujita M, Suetake H, Fujiwara A, Yoshiura Y, Ototake M, Venkatesh B, Miyaki K, Suzuki Y (2005) A genetic linkage map for the tiger pufferfish, Takifugu rubripes. Genetics 171:227–238

    Article  PubMed Central  PubMed  Google Scholar 

  • Kai W, Kikuchi K, Tohari S, Chew AK, Tay A, Fujiwara A, Hosoya S, Suetake H, Naruse K, Brenner S, Suzuki Y, Venkatesh B (2011) Integration of the genetic map and genome assembly of fugu facilitates insights into distinct features of genome evolution in teleosts and mammals. Gen Biol Evol 3:424–442

    Article  Google Scholar 

  • Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K (2012) A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (Fugu). PLoS Genet 8:e1002798

    Article  PubMed Central  PubMed  Google Scholar 

  • Kirkpatrick M, Guerrero RF (2014) Signatures of sex-antagonistic selection on recombining sex chromosomes. Genetics 197:531–541

    Article  PubMed Central  PubMed  Google Scholar 

  • Kirschner J, Weber D, Neuschl C, Franke A, Böttger M, Zielke L, Powalsky E, Groth M, Shagin D, Petzold A, Hartmann N, Englert C, Brockmann GA, Platzer M, Cellerino A, Reichwald K (2012) Mapping of quantitative trait locicontrolling lifespan in the short-lived fish Nothobranchius furzeri – a newvertebrate model for age research. Aging Cell 1:252–261

    Article  Google Scholar 

  • Kobler A, Maes GE, Humblet Y, Volckaert FAM, Eens M (2011) Temperament traits and microhabitat use in bullhead, Cottus perifretum: fish associated with complex habitats are less aggressive. Behaviour 148:603–625

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kukekova AV, Trut LN, Kevin C, Kharlamova AV, Johnson JL, Temnykh SV, Oskina IN, Gulevich RG, Vladimirova AV, Klebanov S, Shepeleva DV, Shikhevich SG, Acland GM, Lark KG (2011) Mapping loci for fox domestication: deconstruction/reconstruction of a behavioral phenotype. Behav Genet 41:593–606

    Article  PubMed Central  PubMed  Google Scholar 

  • Laine VN, Herczeg G, Shikano T, Vilkki J, Merilä J (2014) QTL analysis of behavior in nine-spined sticklebacks (Pungitius pungitius). Behav Genet 44:77–88

    Article  PubMed  Google Scholar 

  • Magnhagen D, Borcherding J (2008) Risk-taking behaviour in foraging perch: does predation pressure influence age-specific boldness? Anim Behav 75:509–517

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  Google Scholar 

  • Mettke-Hofmann C, Winkler H, Leisler B (2002) The significance of ecological factors for exploration and neophobia in parrots. Ethology 108:249–272

    Article  Google Scholar 

  • Munafo MR, Yalcin B, Willis-Owen SA, Flint J (2008) Association of the dopamine D4 receptor (DRD4) gene and approach-related personality traits: meta-analysis and new data. Biol Psychiatry 63:197–206

    Article  PubMed  Google Scholar 

  • Nehrenberg DL, Wang S, Buus RJ, Perkins J, de Villena FPM, Pomp D (2010) Genomic mapping of social behavior traits in a F2 cross derived from mice selectively bred for high aggression. BMC Genet 11:113

    Article  PubMed Central  PubMed  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  PubMed  Google Scholar 

  • Poissant J, Réale D, Martin JGA, Festa-Bianchet M, Coltman DW (2013) A quantitative trait locus analysis of personality in wild bighorn sheep. Ecol Evol 3:474–481

    Article  PubMed Central  PubMed  Google Scholar 

  • Pruitt JN, Riechert SE, Jones TC (2008) Behavioural syndromes and their fitness consequences in a socially polymorphic spider, Anelosimus studiosus. Anim Behav 76:871–879

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Réale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82:291–318

    Article  PubMed  Google Scholar 

  • Réale D, Dingemanse NJ, Kazem AJN, Wright J (2010) Evolutionary and ecological approaches to the study of personality. Philos Trans R Soc Lond B Biol Sci 365:3937–3946

    Article  PubMed Central  PubMed  Google Scholar 

  • Richardson JML (2001) A comparative study of activity levels in larval anurans and response to the presence of different predators. Behav Ecol 12:51–58

    Article  Google Scholar 

  • Shimada MK, Inoue-Murayama M, Ueda Y, Maejima M, Murayama Y, Takenaka O, Hayasaka I, Ito S (2004) Polymorphism in the second intron of dopamine receptor D4 gene in humans and apes. Biochem Biophys Res Commun 316:1186–1190

    Article  PubMed  Google Scholar 

  • Sih A, Bell AM, Johnson JC (2004a) Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372–378

    Article  PubMed  Google Scholar 

  • Sih A, Bell AM, Johnson JC, Ziemba RE (2004b) Behavioral syndromes: an integrative overview. Q Rev Biol 79:241–277

    Article  PubMed  Google Scholar 

  • Sinervo B, Svensson E (2002) Correlational selection and the evolution of genomic architecture. Heredity 89:329–338

    Article  PubMed  Google Scholar 

  • Solberg LC, Baum AE, Ahmadiyeh N, Shimomura K, Li R, Turek FW, Churchill GA, Takahashi JS, Redei EE (2004) Sex- and lineage-specific inheritance of depression-like behavior in the rat. Mamm Genome 15:648–662

    Article  PubMed Central  PubMed  Google Scholar 

  • Stamps JA (2007) Growth-mortality trade-offs and ‘personality traits’ in animals. Ecol Lett 10:355–363

    Article  PubMed  Google Scholar 

  • van Oers K, Mueller JC (2010) Evolutionary genomics of animal personality. Phil Trans Roy Soc Lond B 365:3991–4000

    Article  Google Scholar 

  • van Oers K, Drent PJ, Dingemanse NJ, Kempenaers B (2008) Personality is associated with extrapair paternity in great tits Parus major. Anim Behav 76:555–563

    Article  Google Scholar 

  • Yamahira K, Kikuchi T, Nojima S (1996) Age specific food utilization and spatial distribution of the puffer, Takifugu niphobles, over an intertidal sand flat. Environ Biol Fish 45:311–318

    Article  Google Scholar 

  • Yamanoue Y, Miya M, Matsuura K, Miyazawa S, Tsukamoto N, Doi H, Takahashi H, Mabuchi K, Nishida M, Sakai H (2009) Explosive Speciation of Takifugu: another use of fugu as a model system for evolutionary biology. Mol Biol Evol 26:623–629

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Naoki Mizuno, Yuka Jo and Masashi Fujita (University of Tokyo) for technical support. This research was funded by Grants-in-Aid for Scientific Research, Japanese Society for the Promotion of Science (to S.H., H.S., Y.S. and K.K.).

Conflict of interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All institutional and national guidelines for the care and use of laboratory animals were followed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sho Hosoya.

Additional information

Edited by Stephen Maxson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosoya, S., Suetake, H., Suzuki, Y. et al. Genetic Basis Underlying Behavioral Correlation Between Fugu Takifugu rubripes and a Closely Related Species, Takifugu niphobles . Behav Genet 45, 560–572 (2015). https://doi.org/10.1007/s10519-015-9728-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-015-9728-4

Keywords

Navigation