Skip to main content
Log in

Description and Validation of a Dynamical Systems Model of Presynaptic Serotonin Function: Genetic Variation, Brain Activation and Impulsivity

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Despite more than a decade of empirical work on the role of genetic polymorphisms in the serotonin system on behavior, the details across levels of analysis are not well understood. We describe a mathematical model of the genetic control of presynaptic serotonergic function that is based on control theory, implemented using systems of differential equations, and focused on better characterizing pathways from genes to behavior. We present the results of model validation tests that include the comparison of simulation outcomes with empirical data on genetic effects on brain response to affective stimuli and on impulsivity. Patterns of simulated neural firing were consistent with recent findings of additive effects of serotonin transporter and tryptophan hydroxylase-2 polymorphisms on brain activation. In addition, simulated levels of cerebral spinal fluid 5-hydroxyindoleacetic acid (CSF 5-HIAA) were negatively correlated with Barratt Impulsiveness Scale (Version 11) Total scores in college students (r = −.22, p = .002, N = 187), which is consistent with the well-established negative correlation between CSF 5-HIAA and impulsivity. The results of the validation tests suggest that the model captures important aspects of the genetic control of presynaptic serotonergic function and behavior via brain activation. The proposed model can be: (1) extended to include other system components, neurotransmitter systems, behaviors and environmental influences; (2) used to generate testable hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barr CS, Newman TK, Becker ML, Champoux M, Lesch KP, Suomi SJ, Goldman D, Higley JD (2003a) Serotonin transporter gene variation is associated with alcohol sensitivity in rhesus macaques exposed to early-life stress. Alcohol Clin Exp Res 27(5):812–817

    Article  PubMed  Google Scholar 

  • Barr CS, Newman TK, Becker ML, Parker CC, Champoux M, Lesch KP, Goldman D, Suomi SJ, Higley JD (2003b) The utility of the non-human primate; model for studying gene by environment interactions in behavioral research. Genes Brain Behav 2(6):336–340

    Article  PubMed  Google Scholar 

  • Baumgarten HG, Gothert M (1999) Serotonergic neurons and 5-HT receptors in the CNS. Springer, Berlin, p 767

    Google Scholar 

  • Baumgarten HG, Grozdanovic Z (1998) Role of serotonin in obsessive-compulsive disorder. Br J Psychiatry 35(Suppl):13–20

    Google Scholar 

  • Baumgarten HG, Grozdanovic Z (1999) Anatomy of central serotonergic projection systems. In: Baumgarten HG, Gothert M (eds) Serotonergic neurons and 5-HT receptors in the CNS. Springer, Berlin

    Google Scholar 

  • Bondy B, Buettner A, Zill P (2006) Genetics of suicide. Mol Psychiatry 11(4):336–351

    Article  PubMed  Google Scholar 

  • Brodie ED III (2000) Why evolutionary genetics does not always add up. In: Wolf JB, Brodie ED III, Wade MJ (eds) Epistasis and the evolutionary process. Oxford University Press, Inc., New York

    Google Scholar 

  • Canli T, Lesch KP (2007) Long story short: the serotonin transporter in emotion regulation and social cognition. Nat Neurosci 10(9):1103–1109

    Article  PubMed  Google Scholar 

  • Canli T, Congdon E, Gutknecht L, Constable RT, Lesch KP (2005) Amygdala responsiveness is modulated by tryptophan hydroxylase-2 gene variation. J Neural Transm 112(11):1479–1485

    Article  PubMed  Google Scholar 

  • Canli T, Congdon E, Todd Constable R, Lesch KP (2008) Additive effects of serotonin transporter and tryptophan hydroxylase-2 gene variation on neural correlates of affective processing. Biol Psychol 79(1):118–125

    Article  PubMed  Google Scholar 

  • Carver CS, Miller CJ (2006) Relations of serotonin function to personality: current views and a key methodological issue. Psychiatry Res 144(1):1–15

    Article  PubMed  Google Scholar 

  • Carver CS, Johnson SL, Joormann J (2008) Serotonergic function, two-mode models of self-regulation, and vulnerability to depression: what depression has in common with impulsive aggression. Psychol Bull 134(6):912–943

    Article  PubMed  Google Scholar 

  • Caspi A, McClay J, Moffitt TE, Mill J, Martin J, Craig IW, Taylor A, Poulton R (2002) Role of genotype in the cycle of violence in maltreated children. Science 297(5582):851–854

    Article  PubMed  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301(5631):386–389

    Article  PubMed  Google Scholar 

  • Cinquin O, Demongeot J (2002) Positive and negative feedback: striking a balance between necessary antagonists. J Theor Biol 216(2):229–241

    Article  PubMed  Google Scholar 

  • de Groote L, Olivier B, Westenberg HG (2002) Extracellular serotonin in the prefrontal cortex is limited through terminal 5-HT(1B) autoreceptors: a microdialysis study in knockout mice. Psychopharmacology (Berl) 162(4):419–424

    Article  Google Scholar 

  • Deckert J, Catalano M, Syagailo YV, Bosi M, Okladnova O, Di Bella D, Nothen MM, Maffei P, Franke P, Fritze J, Maier W, Propping P, Beckmann H, Bellodi L, Lesch KP (1999) Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder. Hum Mol Genet 8(4):621–624

    Article  PubMed  Google Scholar 

  • Dunn NA, Lockery SR, Pierce-Shimomura JT, Conery JS (2004) A neural network model of chemotaxis predicts functions of synaptic connections in the nematode caenorhabditis elegans. J Comput Neurosci 17:137–147

    Article  PubMed  Google Scholar 

  • Edelstein-Keshet L (1988) Mathematical models in biology. McGraw-Hill, New York

    Google Scholar 

  • El Mansari M, Blier P (2006) Mechanisms of action of current and potential pharmacotherapies of obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 30(3):362–373

    Article  PubMed  Google Scholar 

  • Evrard A, Laporte AM, Chastanet M, Hen R, Hamon M, Adrien J (1999) 5-HT1A and 5-HT1B receptors control the firing of serotoninergic neurons in the dorsal raphe nucleus of the mouse: studies in 5-HT1B knock-out mice. Eur J Neurosci 11(11):3823–3831

    Article  PubMed  Google Scholar 

  • Evrard A, Malagie I, Laporte AM, Boni C, Hanoun N, Trillat AC, Seif I, De Maeyer E, Gardier A, Hamon M, Adrien J (2002) Altered regulation of the 5-HT system in the brain of MAO-A knock-out mice. Eur J Neurosci 15(5):841–851

    Article  PubMed  Google Scholar 

  • Feinn R, Nellissery M, Kranzler HR (2005) Meta-analysis of the association of a functional serotonin transporter promoter polymorphism with alcohol dependence. Am J Med Genet B Neuropsychiatr Genet 133(1):79–84

    Google Scholar 

  • Glanzman DL (2008) New tricks for an old slug: the critical role of postsynaptic mechanisms in learning and memory in Aplysia. Prog Brain Res 169:277–292

    Article  PubMed  Google Scholar 

  • Gobbi G, Murphy DL, Lesch K, Blier P (2001) Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study. J Pharmacol Exp Ther 296(3):987–995

    PubMed  Google Scholar 

  • Gotlib IH, Joormann J, Minor KL, Hallmayer J (2008) HPA axis reactivity: a mechanism underlying the associations among 5-HTTLPR, stress, and depression. Biol Psychiatry 63(9):847–851

    Article  PubMed  Google Scholar 

  • Gottesman II, Hanson DR (2005) Human development: biological and genetic processes. Annu Rev Psychol 56:263–286

    Article  PubMed  Google Scholar 

  • Gottman JM, Murray JD, Swanson CC, Tyson R, Swanson KR (2002) The mathematics of marriage: dynamic nonlinear models. The MIT Press, Cambridge

    Google Scholar 

  • Green AE, Munafo MR, Deyoung CG, Fossella JA, Fan J, Gray JR (2008) Using genetic data in cognitive neuroscience: from growing pains to genuine insights. Nat Rev Neurosci 9(9):710–720

    Article  PubMed  Google Scholar 

  • Grigorenko EL (2003) Epistasis and the genetics of complex traits. In: Plomin R, deFries JC, Craig IW, McGuffin P (eds) Behavioral genetics in the postgenomic era. American Psychological Association, Washington, pp 247–266

    Chapter  Google Scholar 

  • Gutknecht L, Waider J, Kraft S, Kriegebaum C, Holtmann B, Reif A, Schmitt A, Lesch KP (2008) Deficiency of brain 5-HT synthesis but serotonergic neuron formation in Tph2 knockout mice. J Neural Transm 115(8):1127–1132

    Article  PubMed  Google Scholar 

  • Haghighi F, Bach-Mizrachi H, Huang YY, Arango V, Shi S, Dwork AJ, Rosoklija G, Sheng HT, Morozova I, Ju J, Russo JJ, Mann JJ (2008) Genetic architecture of the human tryptophan hydroxylase 2 gene: existence of neural isoforms and relevance for major depression. Mol Psychiatry 13(8):813–820

    Article  PubMed  Google Scholar 

  • Haldane JBS (1924) A mathematical theory of natural and artificial selection. Trans Camb Phil Soc 23:19–41

    Google Scholar 

  • Hamer D, Sirota L (2000) Beware the chopsticks gene. Mol Psychiatry 5(1):11–13

    Article  PubMed  Google Scholar 

  • Hariri AR, Weinberger DR (2003) Imaging genomics. Br Med Bull 65:259–270

    Article  PubMed  Google Scholar 

  • Hartig PR (1999) Molecular biology and transductional characteristics of 5-HT receptors. In: Baumgarten HG, Gothert M (eds) Serotonergic neurons and 5-HT receptors in the CNS. Springer, Berlin, pp 175–212

    Google Scholar 

  • He M, Sibille E, Benjamin D, Toth M, Shippenberg T (2001) Differential effects of 5-HT1A receptor deletion upon basal and fluoxetine-evoked 5-HT concentrations as revealed by in vivo microdialysis. Brain Res 902(1):11–17

    Article  PubMed  Google Scholar 

  • Herrmann MJ, Huter T, Muller F, Muhlberger A, Pauli P, Reif A, Renner T, Canli T, Fallgatter AJ, Lesch KP (2007) Additive effects of serotonin transporter and tryptophan hydroxylase-2 gene variation on emotional processing. Cereb Cortex 17(5):1160–1163

    Article  PubMed  Google Scholar 

  • Hill EM, Stoltenberg SF, Bullard KH, Li S, Zucker RA, Burmeister M (2002) Antisocial alcoholism and serotonin-related polymorphisms: association tests. Psychiatr Genet 12(3):143–153

    Article  PubMed  Google Scholar 

  • Hotamisligil GS, Breakefield XO (1991) Human monoamine oxidase A gene determines levels of enzyme activity. Am J Hum Genet 49(2):383–392

    PubMed  Google Scholar 

  • Huang YY, Cate SP, Battistuzzi C, Oquendo MA, Brent D, Mann JJ (2004) An association between a functional polymorphism in the monoamine oxidase a gene promoter, impulsive traits and early abuse experiences. Neuropsychopharmacology 29(8):1498–1505

    Article  PubMed  Google Scholar 

  • Hutchison KE, Stallings M, McGeary J, Bryan A (2004) Population stratification in the candidate gene study: fatal threat or red herring? Psychol Bull 130(1):66–79

    Article  PubMed  Google Scholar 

  • Ioannidis JP (2005) Why most published research findings are false. PLoS Med 2(8):e124

    Article  PubMed  Google Scholar 

  • Jabbi M, Korf J, Kema IP, Hartman C, van der Pompe G, Minderaa RB, Ormel J, den Boer JA (2007) Convergent genetic modulation of the endocrine stress response involves polymorphic variations of 5-HTT, COMT and MAOA. Mol Psychiatry 12(5):483–490

    PubMed  Google Scholar 

  • Johnson BA (2004) Role of the serotonergic system in the neurobiology of alcoholism: implications for treatment. CNS Drugs 18(15):1105–1118

    Article  PubMed  Google Scholar 

  • Jonsson EG, Norton N, Gustavsson JP, Oreland L, Owen MJ, Sedvall GC (2000) A promoter polymorphism in the monoamine oxidase A gene and its relationships to monoamine metabolite concentrations in CSF of healthy volunteers. J Psychiatr Res 34(3):239–244

    Article  PubMed  Google Scholar 

  • Khalil HK (1996) Nonlinear systems. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Konno K, Matsumoto M, Togashi H, Yamaguchi T, Izumi T, Watanabe M, Iwanaga T, Yoshioka M (2007) Early postnatal stress affects the serotonergic function in the median raphe nuclei of adult rats. Brain Res 1172:60–66

    Article  PubMed  Google Scholar 

  • Kravitz EA (2000) Serotonin and aggression: insights gained from a lobster model system and speculations on the role of amine neurons in a complex behavior. J Comp Physiol [A] 186(3):221–238

    Article  Google Scholar 

  • Leonardo ED, Hen R (2006) Genetics of affective and anxiety disorders. Annu Rev Psychol 57:117–137

    Article  PubMed  Google Scholar 

  • Lesch KP, Wolozin BL, Murphy DL, Reiderer P (1993) Primary structure of the human platelet serotonin uptake site: identity with the brain serotonin transporter. J Neurochem 60(6):2319–2322

    Article  PubMed  Google Scholar 

  • Levinson DF (2006) The genetics of depression: a review. Biol Psychiatry 60(2):84–92

    Article  PubMed  Google Scholar 

  • Lucki I (1998) The spectrum of behaviors influenced by serotonin. Biol Psychiatry 44(3):151–162

    Article  PubMed  Google Scholar 

  • Mann JJ, Currier D, Murphy L, Huang YY, Galfalvy H, Brent D, Greenhill L, Oquendo M (2008) No association between a TPH2 promoter polymorphism and mood disorders or monoamine turnover. J Affect Disord 106(1–2):117–121

    Article  PubMed  Google Scholar 

  • Mannoury la Cour C, Boni C, Hanoun N, Lesch KP, Hamon M, Lanfumey L (2001) Functional consequences of 5-HT transporter gene disruption on 5-HT(1a) receptor-mediated regulation of dorsal raphe and hippocampal cell activity. J Neurosci 21(6):2178–2185

    PubMed  Google Scholar 

  • McClearn GE (2004) Nature and nurture: interaction and coaction. Am J Med Genet B Neuropsychiatr Genet 124B(1):124–130

    Article  PubMed  Google Scholar 

  • Murphy DL, Lesch KP (2008) Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci 9(2):85–96

    Article  PubMed  Google Scholar 

  • Parsons LH, Kerr TM, Tecott LH (2001) 5-HT(1A) receptor mutant mice exhibit enhanced tonic, stress-induced and fluoxetine-induced serotonergic neurotransmission. J Neurochem 77(2):607–617

    Article  PubMed  Google Scholar 

  • Patton JH, Stanford MS, Barratt ES (1995) Factor structure of the Barratt impulsiveness scale. J Clin Psychol 51(6):768–774

    Article  PubMed  Google Scholar 

  • Perko L (1991) Differential equations and dynamical systems. Springer, New York

    Google Scholar 

  • Pezawas L, Meyer-Lindenberg A, Goldman AL, Verchinski BA, Chen G, Kolachana BS, Egan MF, Mattay VS, Hariri AR, Weinberger DR (2008) Evidence of biologic epistasis between BDNF and SLC6A4 and implications for depression. Mol Psychiatry 13(7):709–716

    Article  PubMed  Google Scholar 

  • Philibert R, Madan A, Andersen A, Cadoret R, Packer H, Sandhu H (2007) Serotonin transporter mRNA levels are associated with the methylation of an upstream CpG island. Am J Med Genet B Neuropsychiatr Genet 144B(1):101–105

    Article  PubMed  Google Scholar 

  • Philibert RA, Gunter TD, Beach SR, Brody GH, Madan A (2008a) MAOA methylation is associated with nicotine and alcohol dependence in women. Am J Med Genet B Neuropsychiatr Genet 147B(5):565–570

    Article  PubMed  Google Scholar 

  • Philibert RA, Sandhu H, Hollenbeck N, Gunter T, Adams W, Madan A (2008b) The relationship of 5HTT (SLC6A4) methylation and genotype on mRNA expression and liability to major depression and alcohol dependence in subjects from the Iowa Adoption Studies. Am J Med Genet B Neuropsychiatr Genet 147B(5):543–549

    Article  PubMed  Google Scholar 

  • Plomin R, deFries JC, Craig IW, McGuffin P (2003) Behavioral genomics. In: Plomin R, deFries JC, Craig IW, McGuffin P (eds) Behavioral genetics in the postgenomic era. American Psychological Association, Washington, pp 531–540

    Chapter  Google Scholar 

  • Rao H, Gillihan SJ, Wang J, Korczykowski M, Sankoorikal GM, Kaercher KA, Brodkin ES, Detre JA, Farah MJ (2007) Genetic variation in serotonin transporter alters resting brain function in healthy individuals. Biol Psychiatry 62(6):600–606

    Article  PubMed  Google Scholar 

  • Reuter M, Ott U, Vaitl D, Hennig J (2007) Impaired executive control is associated with a variation in the promoter region of the tryptophan hydroxylase 2 gene. J Cogn Neurosci 19(3):401–408

    Article  PubMed  Google Scholar 

  • Richer M, Hen R, Blier P (2002) Modification of serotonin neuron properties in mice lacking 5-HT1A receptors. Eur J Pharmacol 435(2–3):195–203

    Article  PubMed  Google Scholar 

  • Risch N, Herrell R, Lehner T, Liang KY, Eaves L, Hoh J, Griem A, Kovacs M, Ott J, Merikangas KR (2009) Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. Jama 301(23):2462–2471

    Article  PubMed  Google Scholar 

  • Sharp T, Umbers V, Gartside SE (1997) Effect of a selective 5-HT reuptake inhibitor in combination with 5-HT1A and 5-HT1B receptor antagonists on extracellular 5-HT in rat frontal cortex in vivo. Br J Pharmacol 121(5):941–946

    Article  PubMed  Google Scholar 

  • Sheehan K, Lowe N, Kirley A, Mullins C, Fitzgerald M, Gill M, Hawi Z (2005) Tryptophan hydroxylase 2 (TPH2) gene variants associated with ADHD. Mol Psychiatry 10(10):944–949

    Article  PubMed  Google Scholar 

  • Soderstrom H, Blennow K, Manhem A, Forsman A (2001) CSF studies in violent offenders. I. 5-HIAA as a negative and HVA as a positive predictor of psychopathy. J Neural Transm 108(7):869–878

    Article  PubMed  Google Scholar 

  • Sontag ED (2005) Molecular systems biology and control. Eur J Control 11(4–5):396–435

    Article  Google Scholar 

  • Stenfors C, Ross SB (2004) Changes in extracellular 5-HIAA concentrations as measured by in vivo microdialysis technique in relation to changes in 5-HT release. Psychopharmacology (Berl) 172(2):119–128

    Article  Google Scholar 

  • Stoltenberg SF (2003) Serotonergic agents and alcoholism treatment: a simulation. Alcohol Clin Exp Res 27(12):1853–1859

    Article  PubMed  Google Scholar 

  • Stoltenberg SF (2005) Epistasis among presynaptic serotonergic system components. Behav Genet 35(2):199–209

    Article  PubMed  Google Scholar 

  • Stoltenberg SF (2010) Dynamic and systems-based models for evaluating hypotheses related to predicting treatment response. In: Johnson BA (ed) Addictive disorders and substance abuse. Springer, New York

    Google Scholar 

  • Stoltenberg SF, Nag P (2007) Applying control system modelling to understand how genetic variation influences serotonin function and behavior. In: Lassau JA (ed) Neural synapse research trends. Nova Science Publishers, Inc., New York, pp 133–171

    Google Scholar 

  • Stoltenberg SF, Glass JM, Chermack ST, Flynn HA, Li S, Weston ME, Burmeister M (2006) Possible association between response inhibition and a variant in the brain-expressed tryptophan hydroxylase-2 gene. Psychiatr Genet 16(1):35–38

    Article  PubMed  Google Scholar 

  • Stoltenberg SF, Batien BD, Birgenheir DG (2008) Does gender moderate associations among impulsivity and health-risk behaviors? Addict Behav 33(2):252–265

    Article  PubMed  Google Scholar 

  • Sullivan PF (2007) Spurious genetic associations. Biol Psychiatry 61(10):1121–1126

    Article  PubMed  Google Scholar 

  • Thompson BL, Stanwood GD (2008) Pleiotropic effects of neurotransmission during development: modulators of modularity. J Autism Dev Disord 39(2):260–268

    Article  PubMed  Google Scholar 

  • Vage J, Lingaas F (2008) Single nucleotide polymorphisms (SNPs) in coding regions of canine dopamine- and serotonin-related genes. BMC Genet 9:10

    Article  PubMed  Google Scholar 

  • van der Stelt HM, Broersen LM, Olivier B, Westenberg HG (2004) Effects of dietary tryptophan variations on extracellular serotonin in the dorsal hippocampus of rats. Psychopharmacology (Berl) 172(2):137–144

    Article  Google Scholar 

  • Veenstra-VanderWeele J, Cook EH Jr (2003) Knockout mouse points to second form of tryptophan hydroxylase. Mol Interv 3(2):72–75, 50

    Google Scholar 

  • Virkkunen M, Goldman D, Linnoila M (1996) Serotonin in alcoholic violent offenders. Ciba Found Symp 194168–194177; discussion 177–182

  • Vomel M, Wegener C (2008) Neuroarchitecture of aminergic systems in the larval ventral ganglion of Drosophila melanogaster. PLoS ONE 3(3):e1848

    Article  PubMed  Google Scholar 

  • Ward LM (2002) Dynamical cognitive science. The MIT Press, Cambridge

    Google Scholar 

  • Weiner N (1965) Cybernetics, second edition: or the control and communication in the animal and the machine. The MIT Press, Cambridge

    Google Scholar 

  • Weiss LA, Abney M, Cook EH Jr, Ober C (2005) Sex-specific genetic architecture of whole blood serotonin levels. Am J Hum Genet 76(1):33–41

    Article  PubMed  Google Scholar 

  • Westergaard GC, Suomi SJ, Chavanne TJ, Houser L, Hurley A, Cleveland A, Snoy PJ, Higley JD (2003) Physiological correlates of aggression and impulsivity in free-ranging female primates. Neuropsychopharmacology 28(6):1045–1055

    PubMed  Google Scholar 

  • Williams RB, Marchuk DA, Gadde KM, Barefoot JC, Grichnik K, Helms MJ, Kuhn CM, Lewis JG, Schanberg SM, Stafford-Smith M, Suarez EC, Clary GL, Svenson IK, Siegler IC (2003) Serotonin-related gene polymorphisms and central nervous system serotonin function. Neuropsychopharmacology 28(3):533–541

    Article  PubMed  Google Scholar 

  • Zahnley T, Macey R, Oster G (2001) Berkeley Madonna (Version 8.0.1) [Computer software]. University of California, Berkeley

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by a three year research grant from the National Institute of Mental Health (NIMH) grant no. 1R15MH077654-01A. Also, the first author in this work was partially supported by NIH grant no. 2 P20 RR016479 from the INBRE program of the National Center for Research Resources. The second author will also like to thank the Department of Mathematics for their generous support and also for the Berkeley Madonna Software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott F. Stoltenberg.

Additional information

Edited by Kristen Jacobson.

Appendix

Appendix

Berkeley Madonna Code to simulate differential and difference Eqs. 817:

$$ \begin{aligned}& {\text{METHOD}}\;{\text{ RK}}4 \\& {\text{STARTTIME}} = 0 \\& {\text{STOPTIME}} = 200 \\& {\text{DT}} = 0.01 \\& {\text{d}}/{\text{dt}}({\text{x}}1)=-({\text{g}}+{\text{d}})*{\text{x}}1+{\text{u}}*(1-\exp(-2*{\text{x}}2))/(1+\exp(-2*{\text{x}}2)) \\& {\text{INIT}}\;{\text{x}}1=0 \\& {\text{d}}/{\text{dt}}({\text{x}}2)={\text{g}}*{\text{x}}1-{\text{k}}4*{\text{x}}2+{\text{r}}-{\text{u}} \\& {\text{INIT}}\;{\text{x}}2=1 \\& {\text{d}}/{\text{dt}}({\text{c}})=-{\text{c}}+(({\text{k}}\_1/{\text{k}}1{\text{trp}})+{\text{c}})*{\text{y}}1+{\text{v}} \\& {\text{INIT}}\;{\text{c}}=1 \\& {\text{d}}/{\text{dt}}({\text{y}}1)=({\text{c}}-(({\text{k}}\_1 + {\text{k}}2{\text{trp}})/{\text{k}}1{\text{trp}}+{\text{c}})*{\text{y}}1)/{\text{e}} \\& {\text{INIT}}\;{\text{y}}1=1 \\& {\text{d}}/{\text{dt}}({\text{r}})=-{\text{k}}3*{\text{r}}+{\text{k}}2{\text{trp}}*{\text{y}}1 \\& {\text{INIT}}\;{\text{r}} = 1 \\& {\text{d}}/{\text{dt}}({\text{l}})=-{\text{l}}+(({\text{k}}\_1/{\text{k}}1{\text{maoa}})+{\text{l}})*{\text{z}}1+{\text{k}}4*{\text{x}}2 \\& {\text{INIT}}\;{\text{l}} = 1 \\& {\text{d}}/{\text{dt}}({\text{z}}1)=({\text{l}}-(({\text{k}}\_1+{\text{k}}2{\text{maoa}})/{\text{k}}1{\text{maoa}}+{\text{l}})*{\text{z}}1)/{\text{e}} \\& {\text{INIT}}\;{\text{z}}1 = 0 \\& {\text{d}}/{\text{dt}}({\text{p}})=-{\text{k}}3*{\text{p}}+{\text{k}}2{\text{maoa}}*{\text{z}}1 \\& {\text{INIT}}\;{\text{p}} = 0 \\& {\text{rand}}={\text{RANDOM}}(0,1) \\& {\text{u}}={\text{IF}}\;({\text{SIN}}({\text{TIME}}/{\text{PER}})>0)\;{\text{THEN}}\;({\text{IF}}\;({\text{rand}}>1-{\text{aprob}})\;{\text{AND}}\;(({\text{x}}1-{\text{x}}1{\text{th}})>0)\;{\text{THEN}}\;0\;{\text{ELSE}}\;({\text{Rmax}}-{\text{b}}*{\text{x}}1)*{\text{x}}2)\;{\text{ELSE}}\;0 \\& {\text{INIT}}\;{\text{Fire Rate}}=0 \\& {\text{INIT}}\,{\text{Fire}} = 0 \\& {\text{FireRate}}({\text{t}}+{\text{Dt}})={\text{FireRate}}+{\text{Fire}} \\& {\text{Next}}\;{\text{Fire}}={\text{IF}}\;{\text{u}}>0\;{\text{THEN}}\;1\;{\text{ELSE}}\;0 \\\end{aligned} $$

See Table 1.

Table 1 Model parameter values

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoltenberg, S.F., Nag, P. Description and Validation of a Dynamical Systems Model of Presynaptic Serotonin Function: Genetic Variation, Brain Activation and Impulsivity. Behav Genet 40, 262–279 (2010). https://doi.org/10.1007/s10519-010-9335-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-010-9335-3

Keywords

Navigation