Skip to main content
Log in

Characterization of Quantitative Trait Loci for the Age of First Foraging in Honey Bee Workers

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Identifying the basis of quantitative trait loci (QTL) remains challenging for the study of complex traits, such as behavior. The honey bee is a good model combining interesting social behavior with a high recombination rate that facilitates this identification. Several studies have focused on the pollen hoarding syndrome, identifying multiple QTL as the genetic basis of its behavioral components. One component, the age of first foraging, is central for colony organization and four QTL were previously described without identification of their genomic location. Enabled by the honey bee genome project, this study provides data from multiple experiments to scrutinize these QTL, including individual and pooled SNP mapping, sequencing of AFLP markers, and microsatellite genotyping. The combined evidence confirms and localizes two of the previous QTL on chromosome four and five, dismisses the other two, and suggests one novel genomic region on chromosome eleven to influence the age of first foraging. Among the positional candidates the Ank2, PKC, Erk7, and amontillado genes stand out due to corroborating functional evidence. This study thus demonstrates the power of combined, genome-based approaches to enable targeted studies of a manageable set of candidate genes for natural behavioral variation in the important, complex social trait “age of first foraging”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams HA, Southey BR, Robinson GE, Rodriguez-Zas SL (2008) Meta-analysis of genome-wide expression patterns associated with behavioral maturation in honey bees. BMC Genomics 9:503. doi:10.1186/1471-2164-9-503

    Article  PubMed  Google Scholar 

  • Amdam GV, Csondes A, Fondrk MK, Page RE Jr (2006) Complex social behaviour derived from maternal reproductive traits. Nature 439:76–78. doi:10.1038/nature04340

    Article  PubMed  Google Scholar 

  • Ammons AD, Hunt GJ (2008) Identification of quantitative trait loci and candidate genes influencing ethanol sensitivity in honey bees. Behav Genet 38:531–553. doi:10.1007/s10519-008-9218-z

    Article  PubMed  Google Scholar 

  • Arechavaleta-Velasco ME, Hunt GJ (2004) Binary trait loci that influence honey bee (Hymenoptera:Apidae) guarding behavior. Ann Entomol Soc Am 97:177–183. doi:10.1603/0013-8746(2004)097[0177:BTLTIH]2.0.CO;2

    Article  Google Scholar 

  • Barchuk AR, Cristino AS, Kucharski R, Costa LF, Simoes ZLP, Maleszka R (2007) Molecular determinants of caste differentiation in the highly eusocial honeybee Apis mellifera. BMC Dev Biol 7:70

    Article  PubMed  Google Scholar 

  • Barron AB, Schulz DJ, Robinson GE (2002) Octopamine modulates responsiveness to foraging-related stimuli in honey bees (Apis mellifera). J Comp Physiol [A] 188:603–610. doi:10.1007/s00359-002-0335-5

    Article  Google Scholar 

  • Ben-Shahar Y, Robichon A, Sokolowski MB, Robinson GE (2002) Influence of gene action across different time scales on behavior. Science 296:741–744. doi:10.1126/science.1069911

    Article  PubMed  Google Scholar 

  • Ben-Shahar Y, Dudek NL, Robinson GE (2004) Phenotypic deconstruction reveals involvement of manganese transporter malvolio in honey bee division of labor. J Exp Biol 207:3281–3288. doi:10.1242/jeb.01151

    Article  PubMed  Google Scholar 

  • Beye M, Gattermeier I, Hasselmann M, Gempe T, Schioett M, Baines JF, Schlipalius D, Mougel F, Emore C, Rueppell O, Sirvio A, Guzman-Novoa E, Hunt G, Solignac M, Page RE (2006) Exceptionally high levels of recombination across the honey bee genome. Genome Res 16:1339–1344. doi:10.1101/gr.5680406

    Article  PubMed  Google Scholar 

  • Chandra SBC, Hunt GJ, Cobey S, Smith BH (2001) Quantitative trait loci associated with reversal learning and latent inhibition in honeybees (Apis mellifera). Behav Genet 31:275–285. doi:10.1023/A:1012227308783

    Article  PubMed  Google Scholar 

  • Chintapalli VR, Wang J, Dow JAT (2007) Using FlyAtlas to identify better Drosophila models of human disease. Nat Genet 39:715–720. doi:10.1038/ng2049

    Article  PubMed  Google Scholar 

  • Darvasi A, Soller M (1994) Selective DNA pooling for determination of linkage between a molecular marker and a quantitative trait locus. Genetics 138:1365–1373

    PubMed  Google Scholar 

  • Fahrbach SE, Moore D, Capaldi EA, Farris SM, Robinson GE (1998) Experience-expectant plasticity in the mushroom bodies of the honeybee. Learn Mem 5:115–123

    PubMed  Google Scholar 

  • Farooqui T (2007) Octopamine-mediated neuromodulation of insect senses. Neurochem Res 32:1511–1529. doi:10.1007/s11064-007-9344-7

    Article  PubMed  Google Scholar 

  • Gort G, Koopman WJM, Stein A (2006) Fragment length distributions and collision probabilities for AFLP markers. Biometrics 62:1107–1115. doi:10.1111/j.1541-0420.2006.00613.x

    Article  PubMed  Google Scholar 

  • Hall JC, Alahiotis SN, Strumpf DA, White K (1980) Behavioral and biochemical defects in temperature sensitive acetylcholinesterase mutants of Drosophila melanogaster. Genetics 96:939–965

    PubMed  Google Scholar 

  • Homyk T, Sheppard DE (1977) Behavioral mutants of Drosophila melanogaster. 1. Isolation and mapping of mutations which decrease flight ability. Genetics 87(9):5–104

    Google Scholar 

  • Honeybee Genome Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949. doi:10.1038/nature05260

    Article  Google Scholar 

  • Honjo K, Furukubo-Tokunaga K (2005) Induction of cAMP response element-binding protein-dependent medium-term memory by appetitive gustatory reinforcement in Drosophila larvae. J Neurosci 25:7905–7913. doi:10.1523/JNEUROSCI.2135-05.2005

    Article  PubMed  Google Scholar 

  • Hoogendoorn B, Norton N, Kirov G, Williams N, Hamshere ML, Spurlock G, Austin J, Stephens MK, Buckland PR, Owen MJ, O’Donovan MC (2000) Cheap, accurate and rapid allele frequency estimation of single nucleotide polymorphisms by primer extension and DHPLC in DNA pools. Hum Genet 107:488–493. doi:10.1007/s004390000397

    Article  PubMed  Google Scholar 

  • Humphries MA, Muller U, Fondrk MK, Page RE Jr (2003) PKA and PKC content in the honey bee central brain differs in genotypic strains with distinct foraging behavior. J Comp Physiol [A] 189:555–562. doi:10.1007/s00359-003-0433-z

    Article  Google Scholar 

  • Humphries MA, Fondrk MK, Page RE Jr (2005) Locomotion and the pollen hoarding behavioral syndrome of the honeybee (Apis mellifera L.). J Comp Physiol [A] 191:669–674. doi:10.1007/s00359-005-0624-x

    Article  Google Scholar 

  • Hunt GJ, Page RE Jr, Fondrk MK, Dullum CJ (1995) Major quantitative trait loci affecting honey bee foraging behavior. Genetics 141:1537–1545

    PubMed  Google Scholar 

  • Hunt GJ, Guzman-Novoa E, Fondrk MK, Page RE Jr (1998) Quantitative trait loci for honey bee stinging behavior and body size. Genetics 148:1203–1213

    PubMed  Google Scholar 

  • Hunt GJ, Amdam GV, Schlipalius D, Emore C, Sardesai N, Williams CE, Rueppell O, Guzman-Novoa E, Arechavaleta-Velasco M, Chandra S, Fondrk MK, Beye M, Page RE Jr (2007) Behavioral genomics of honeybee foraging and nest defense. Naturwissenschaften 94:247–267. doi:10.1007/s00114-006-0183-1

    Article  PubMed  Google Scholar 

  • Koch I, Schwarz H, Beuchle D, Goellner B, Langegger M, Aberle H (2008) Drosophila ankyrin 2 is required for synaptic stability. Neuron 58:210–222. doi:10.1016/j.neuron.2008.03.019

    Article  PubMed  Google Scholar 

  • Korol A, Frenkel Z, Cohen L, Lipkin E, Soller M (2007) Fractioned DNA pooling: a new cost-effective strategy for fine mapping of quantitative trait loci. Genetics 176:2611–2623. doi:10.1534/genetics.106.070011

    Article  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  Google Scholar 

  • Lapidge KL, Oldroyd BP, Spivak M (2002) Seven suggestive quantitative trait loci influence hygienic behavior of honey bees. Naturwissenschaften 89:565–568

    PubMed  Google Scholar 

  • Lattorff HMG, Moritz RFA, Crewe RM, Solignac M (2007) Control of reproductive dominance by the thelytoky gene in honeybees. Biol Lett 3:292–295. doi:10.1098/rsbl.2007.0083

    Article  PubMed  Google Scholar 

  • Le Conte Y, Hefetz A (2008) Primer pheromones in social hymenoptera. Annu Rev Entomol 53:523–542. doi:10.1146/annurev.ento.52.110405.091434

    Article  PubMed  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Constructing genetic linkage maps with MAPMAKER/EXP version 3.0: a tutorial and reference manual. In: A whitehead institute for biomedical research technical report, Cambridge, MA

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339. doi:10.1146/annurev.genet.35.102401.090633

    Article  PubMed  Google Scholar 

  • Nelson CM, Ihle KE, Fondrk MK, Page RE Jr, Amdam GV (2007) The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol 5:e62. doi:10.1371/journal.pbio.0050062

    Article  PubMed  Google Scholar 

  • Oxley PR, Thompson GJ, Oldroyd BP (2008) Four quantitative trait loci that influence worker sterility in the honeybee (Apis mellifera). Genetics 179:1337–1343. doi:10.1534/genetics.108.087270

    Article  PubMed  Google Scholar 

  • Page RE Jr, Amdam GV (2007) The making of a social insect: developmental architectures of social design. BioEssays 29:334–343. doi:10.1002/bies.20549

    Article  PubMed  Google Scholar 

  • Page RE Jr, Erber J (2002) Levels of behavioral organization and the evolution of division of labor. Naturwissenschaften 89:91–106. doi:10.1007/s00114-002-0299-x

    Article  PubMed  Google Scholar 

  • Page RE Jr, Fondrk MK (1995) The effects of colony level selection on the social organization of honey bee (Apis mellifera L.) colonies—colony level components of pollen hoarding. Behav Ecol Sociobiol 36:135–144. doi:10.1007/BF00170718

    Article  Google Scholar 

  • Page RE Jr, Fondrk MK, Hunt GJ, Guzman-Novoa E, Humphries MA, Nguyen K, Greene AS (2000) Genetic dissection of honeybee (Apis mellifera L.) foraging behavior. J Hered 91:474–479. doi:10.1093/jhered/91.6.474

    Article  PubMed  Google Scholar 

  • Page RE Jr, Gadau J, Beye M (2002) The emergence of hymenopteran genetics. Genetics 160:375–379

    PubMed  Google Scholar 

  • Pankiw T (2003) Directional change in a suite of foraging behaviors in tropical and temperate evolved honey bees (Apis mellifera L.). Behav Ecol Sociobiol 54:458–464. doi:10.1007/s00265-003-0640-1

    Article  Google Scholar 

  • Phillips PC (1999) From complex traits to complex alleles. Trends Genet 15:6–8. doi:10.1016/S0168-9525(98)01622-9

    Article  PubMed  Google Scholar 

  • Ragoussis J, Elvidge GP, Kaur K, Colella S (2006) Matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry in genomics research. PLOS Genet 2:920–929. doi:10.1371/journal.pgen.0020100

    Article  Google Scholar 

  • Rayburn LYM, Gooding HC, Choksi SP, Maloney D, Kidd AR, Siekhaus DE, Bender M (2003) amontillado, the Drosophila homolog of the prohormone processing protease PC2, is required during embryogenesis and early larval development. Genetics 163:227–237

    PubMed  Google Scholar 

  • Robinson GE (2002) Genomics and integrative analyses of division of labor in honeybee colonies. Am Nat 160:S160–S172. doi:10.1086/342901

    Article  PubMed  Google Scholar 

  • Robinson GE, Huang Z-Y (1998) Colony integration in honey bees: genetic, endocrine and social control of division of labor. Apidology 29:159–170. doi:10.1051/apido:19980109

    Article  Google Scholar 

  • Robinson GE, Fernald RD, Clayton DF (2008) Genes and social behavior. Science 322:896–900. doi:10.1126/science.1159277

    Article  PubMed  Google Scholar 

  • Rueppell O, Pankiw T, Nielson DI, Fondrk MK, Beye M, Page RE Jr (2004) The genetic architecture of the behavioral ontogeny of foraging in honey bee workers. Genetics 167:1767–1779. doi:10.1534/genetics.103.021949

    Article  PubMed  Google Scholar 

  • Rueppell O, Chandra SBC, Pankiw T, Fondrk MK, Beye M, Hunt GJ, Page RE Jr (2006a) The genetic architecture of sucrose responsiveness in the honey bee (Apis mellifera L.). Genetics 172:243–251. doi:10.1534/genetics.105.046490

    Article  PubMed  Google Scholar 

  • Rueppell O, Page RE Jr, Fondrk MK (2006b) Male behavioural maturation rate responds to selection on pollen hoarding in honeybees. Anim Behav 71:227–234. doi:10.1016/j.anbehav.2005.05.008

    Article  PubMed  Google Scholar 

  • Rueppell O, Bachelier C, Fondrk MK, Page RE Jr (2007) Regulation of life history determines lifespan of worker honey bees (Apis mellifera L.). Exp Gerontol 42:1020–1032. doi:10.1016/j.exger.2007.06.002

    Article  PubMed  Google Scholar 

  • Rueppell O, Linford R, Gardner P, Coleman J, Fine K (2008) Aging and demographic plasticity in response to experimental age structures in honeybees (Apis mellifera L.). Behav Ecol Sociobiol 62:1621–1631. doi:10.1007/s00265-008-0591-7

    Article  PubMed  Google Scholar 

  • Rüppell O, Pankiw T, Page RE Jr (2004) Pleiotropy, epistasis and new QTL: the genetic architecture of honey bee foraging behavior. J Hered 95:481–491. doi:10.1093/jhered/esh072

    Article  PubMed  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234. doi:10.1038/72708

    Article  PubMed  Google Scholar 

  • Schug MD, Regulski EE, Pearce A, Smith SG (2004) Isolation and characterization of dinucleotide repeat microsatellites in Drosophila ananassae. Genet Res 83:19–29. doi:10.1017/S0016672303006542

    Article  PubMed  Google Scholar 

  • Schulz DJ, Huang ZY, Robinson GE (1998) Effects of colony food shortage on behavioral development in honey bees. Behav Ecol Sociobiol 42:295–303. doi:10.1007/s002650050442

    Article  Google Scholar 

  • Sen-Sarma M, Whitfield CW, Robinson GE (2007) Species differences in brain gene expression profiles associated with adult behavioral maturation in honey bees. BMC Genomics 8:202. doi:10.1186/1471-2164-8-202

    Article  PubMed  Google Scholar 

  • Shapira M, Thompson CK, Soreq H, Robinson GE (2001) Changes in neuronal acetylcholinesterase gene expression and division of labor in honey bee colonies. J Mol Neurosci 17:1–12. doi:10.1385/JMN:17:1:1

    Article  PubMed  Google Scholar 

  • Solignac M, Mougel F, Vautrin D, Monnerot M, Cornuet JM (2007) A third-generation microsatellite-based linkage map of the honey bee, Apis mellifera, and its comparison with the sequence-based physical map. Genome Biol 8:R66. doi:10.1186/gb-2007-8-4-r66

    Article  PubMed  Google Scholar 

  • Sullivan JP, Jassim O, Fahrbach SE, Robinson GE (2000) Juvenile hormone paces behavioral development in the adult worker honey bee. Horm Behav 37:1–14. doi:10.1006/hbeh.1999.1552

    Article  PubMed  Google Scholar 

  • Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, Lewis SE, Richards S, Ashburner M, Hartenstein V, Celniker SE, Rubin GM (2002) Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol 3:research0088.1–research0088.14

    Article  Google Scholar 

  • Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL 4.0, software for the calculation of QTL positions on genetic maps. Plant Research International, Wageningen, The Netherlands

    Google Scholar 

  • Vasemagi A, Primmer CR (2005) Challenges for identifying functionally important genetic variation: the promise of combining complementary research strategies. Mol Ecol 14:3623–3642. doi:10.1111/j.1365-294X.2005.02690.x

    Article  PubMed  Google Scholar 

  • Wang Y, Amdam GV, Rueppell O, Wallrichs M, Fondrk MK, Kaftanoglu O, Page RE Jr (2009) PDK1 and HR46 gene homologs tie social behavior to ovary signals. PLoS ONE 4:e4899. doi:10.1371/journal.pone.0004899

  • Wayne ML, McIntyre LM (2002) Combining mapping and arraying: an approach to candidate gene identification. Proc Natl Acad Sci USA 99:14903–14906. doi:10.1073/pnas.222549199

    Article  PubMed  Google Scholar 

  • Whitfield CW, Cziko A-M, Robinson GE (2003) Gene expression profiles in the brain predict behavior in individual honey bees. Science 302:296–299. doi:10.1126/science.1086807

    Article  PubMed  Google Scholar 

  • Whitfield CW, Behura SK, Berlocher SH, Clark AG, Johnston JS, Sheppard WS, Smith DR, Suarez AV, Weaver D, Tsutsui ND (2006a) Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science 314:642–645. doi:10.1126/science.1132772

    Article  PubMed  Google Scholar 

  • Whitfield CW, Ben-Shahar Y, Brillet C, Leoncini I, Crauser D, LeConte Y, Rodriguez-Zas S, Robinson GE (2006b) Genomic dissection of behavioral maturation in the honey bee. Proc Natl Acad Sci USA 103:16068–16075. doi:10.1073/pnas.0606909103

    Article  PubMed  Google Scholar 

  • Wilson RJ, Goodman JL, Strelets VB, FlyBase Consortium (2008) FlyBase: integration and improvements to query tools. Nucleic Acids Res 36:D588–D593. doi:10.1093/nar/gkm930

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Robert Page (ASU) for breeding and providing the original mapping populations, as well as allowing me to use the software MapQTL, Charlie Whitfield (UIUC) for practical assistance with the pooled SNP genotyping and providing his raw data to enable my analyses, and Greg Hunt (Purdue), Michael Munday (UNCG) and Patrick Nolan (UNCG) for advice and help regarding the analysis of candidate genes. Two careful reviewers significantly improved the quality of this manuscript. Practical help was provided by Kim Fondrk (UCD) and Meredith Humphries (UCD) with cloning the AFLP fragments, and Jackie Metheny (UNCG) and Emily Meznar (UNCG) with microsatellite genotyping. Financial support was provided by NSF (#0615502) and NIH (NIA PO1 AG22500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olav Rueppell.

Additional information

Edited by Yong-Kyu Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rueppell, O. Characterization of Quantitative Trait Loci for the Age of First Foraging in Honey Bee Workers. Behav Genet 39, 541–553 (2009). https://doi.org/10.1007/s10519-009-9278-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-009-9278-8

Keywords

Navigation