Skip to main content
Log in

Genetics Analysis of Larval Foraging Behavior in Drosophila Funebris

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

To understand the genetics and evolution of foraging in larvae of Drosophila funebris, we examined two strains reared at different breeding sites in the wild. Larvae of the Til–Til strain breed in necrotic cactus tissue, while those of the Pelequén strain rear in necrotic prickly pear cladodes. We measured feeding, locomotion, turning behavior, and latency of D. funebris. Til–Til and Pelequén larvae, at 8 days of age show very similar rates in all behaviors. Crosses between Til–Til and Pelequén strains decrease feeding rate and increase locomotion, turning, and latency in F1 and F2 larvae. Backcross larvae show a behavior similar to that of their parental strains. The behavioral similarities observed between the Til–Til and Pelequén strains are product of two different co-adapted gene pools. Epistasis and dominance are the principal sources upon which adaptation of the gene pools of each population are based.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arizmendi C (2004) Biometrical study of larval feeding behavior of two strains of D. pavani. Thesis to obtain Title of Teacher of Biology and Natural Sciences. Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile (in Spanish)

  • Barker JSF, Starmer WT (1999) Environmental effects and the genetics of oviposition site preference for natural yeast substrates in Drosophila buzzatii. Hereditas 130:145–175. doi:10.1111/j.1601-5223.1999.00145.x

    Article  PubMed  Google Scholar 

  • Bochdanovits Z, De Jong G (2003) Temperature dependence of fitness components in geographical populations of Drosophila melanogaster: changing the association between size and fitness. Biol J Linn Soc 80:717–725. doi:10.1111/j.1095-8312.2003.00271.x

    Article  Google Scholar 

  • Brncic D (1987) Coexistencia de diferentes especies de Drosophila en frutas fermentadas naturalmente. Medio Ambiente 8:3–9

    Google Scholar 

  • Burdick AB (1954) New medium of reproductive quality stable at room temperature. Drosoph Inf Serv 28:170

    Google Scholar 

  • Carson, H (1971) The ecology of Drosophila breeding sites. The Harold L. Lyon Arboretum Lecture Number University of Hawaii, Foundation Lyon Arboretum Fund

  • Chakir M, Capy P, Genermont J, Pla E, David JR (1996) Adaptation to fermenting resources in Drosophila melanogaster: ethanol and acetic acid tolerances share a common genetic bases Evolution. Int J Organic Evol 50:767–776. doi:10.2307/2410849

    Google Scholar 

  • David JR, Allemand R, Van Herrewege J, Cohet Y (1983) Ecophysiology: abiotic factors. In: Ashburner M, Carson HL, Thompson JL (eds) The genetics and biology of Drosophila, vol 3. Academic Press, London, pp 105–170

    Google Scholar 

  • Davis JM, Stamps JA (2004) The effect of natal experience on habitat preferences. Trends Ecol Evol 19:411–416. doi:10.1016/j.tree.2004.04.006

    Article  PubMed  Google Scholar 

  • Flores S (2004) Taxonomic and phylogenetic analysis of natural populations of Drosophila funebris that live in necrotic tissue of cactus Echinopsis chilensis. Ph. D. Thesis. Escuela de Postgrado, Facultad de Medicina, Universidad de Chile (in Spanish)

  • Fogleman JC, Abril JR (1990) Ecological and evolutionary importance of host plant chemistry. In: Barker JSF, Starmer WT, MacIntyre RJ (eds) Ecological and evolutionary genetics of Drosophila. Plenum Press, New York, pp 121–143

    Google Scholar 

  • Fogleman JC, Danielson PB (2001) Chemical interactions in the cactus-microorganism-Drosophila model system of the Sonoran desert. Am Zool 41:877–889. doi:10.1668/0003-1569(2001)041[0877:CIITCM]2.0.CO;2

    Article  CAS  Google Scholar 

  • Fogleman JC, Starmer WT, Heed WB (1981) Larval selectivity for yeast species by Drosophila mojavensis in natural substrates. Proc Nat Acad Sci 78:4435–4439. doi:10.1073/pnas.78.7.4435

    Article  PubMed  Google Scholar 

  • Godoy-Herrera R, Connoll K (2007) Organization of foraging behavior in larvae of cosmopolitan, widespread and endemic Drosophila species. Behav Genet 37:595–603. doi:10.1007/s10519-007-9151-6

    Article  PubMed  Google Scholar 

  • Godoy-Herrera R, Burnet B, Connolly K (2004) Conservation and divergence of the genetic structure of larval foraging behaviour in two species of the Drosophila simulans clade. Heredity 92:14–19. doi:10.1038/sj.hdy.6800356

    Article  PubMed  CAS  Google Scholar 

  • Godoy-Herrera R, Burnet B, Connolly K (2005) Hybrid disadvantage in the larval foraging behaviour of the two neotropical species of Drosophila pavani and Drosophila gaucha. Genetica 124:33–40. doi:10.1007/s10709-004-5913-8

    Article  PubMed  Google Scholar 

  • Green CH, Burnet B, Connolly K (1983) Organization and patterns of inter-and intraspecific variation on the behavior of Drosophila larvae. Anim Behav 31:282–291. doi:10.1016/S0003-3472(83)80198-5

    Article  Google Scholar 

  • Kambysellis MP, Heed WB (1971) Studies of oogenesis in natural populations of Drosophilidae Relations of ovarian development and ecological habitats of the Hawaiian species. Am Nat 105:31–49. doi:10.1086/282700

    Article  Google Scholar 

  • Kearsey MJ, Pooni HS (1996) The genetical analysis of quantitative traits. Chapman and Hall, London

    Google Scholar 

  • Manríquez G, Benado M (1994) Echinopsis chilensis (Friedrich et Roeland): an endemic breeding site for Drosophila pavani Brncic 1957. Revista Chilena de Entomologia 21:185–186

    Google Scholar 

  • Markow T, O’Grady PM (2006) Drosophila. A guide to species identification and use. Elsevier, Amsterdan

    Google Scholar 

  • Martin P, Bateson P (1990) Measuring behavior. An introductory guide. Cambridge University Press, Cambridge

    Google Scholar 

  • Mather K, Jinks JL (1971) Biometrical genetics. The study of continuous variation. Chapman and Hall, London

    Google Scholar 

  • Medina-Muñoz MC, Godoy-Herrera R (2004) Dispersal and prepupation behavior of chilean sympatric Drosophila species that breed in the same site in nature. Behav Ecol 16:316–322. doi:10.1093/beheco/arh125

    Article  Google Scholar 

  • Mery F, Kawecki TJ (2004) The effect of learning on experimental evolution of resource preference in Drosophila melanogaster Evolution. Int J Organic Evol 58:757–767

    Google Scholar 

  • Muhammad-Ali AZZ, Burnet B (1995) Ethanol tolerance and variation at the alcohol dehydrogenase (Adh) locus of Drosophila mauritiana. Heredity 74:438–444. doi:10.1038/hdy.1995.61

    Article  PubMed  CAS  Google Scholar 

  • Osborne KA, Robichon A, Burgess E, Butland S, Shaw RA, Coulthard A et al (1997) Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science 277:834–836. doi:10.1126/science.277.5327.834

    Article  PubMed  CAS  Google Scholar 

  • Pecsenye K, Komlost I, Saura A (2004) Heritabilities and additive genetic variances of the activities of some enzymes in Drosophila melanogaster populations living in different habitats. Heredity 93:215–221. doi:10.1038/sj.hdy.6800497

    Article  PubMed  CAS  Google Scholar 

  • Powell JR (1997) Progress and prospect in evolutionary biology The Drosophila model. Oxford University Press, Oxford

    Google Scholar 

  • Ruiz-Dubreuil G, Burnet B, Connolly K, Furness P (1996) Larval foraging behaviour and competition in Drosophila melanogaster. Heredity 76:55–64

    Article  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. W F Freeman and Company, New York

    Google Scholar 

  • Starmer WT (1981) A comparison of Drosophila habitats according to the physiological attributes of the associated yeast communities. Evolution 35:38–52

    Article  CAS  Google Scholar 

  • Wallace B (2000) A natural historian’s view of heterosis and related topics. In: Singh RS, Krimbas CB (eds) Evolutionary genetics. From molecules to morphology. Cambridge University Press, Cambridge, pp 41–51

    Google Scholar 

Download references

Acknowledgements

Thanks are due to Departamento de Investigación y Desarrollo., DI 2006 ENL 06/07, Universidad de Chile, and FONDECYT 1020130. R G-H is indebted to his wife Tatiana Márquez for her support and help in preparation of the manuscript. Thanks are also extended to Dr. Marta Zlatic and Professor Susi Koref-Santibañez for their comments and suggestions concerning the manuscript. We also wish to thank two anonymous referees for their very useful comments. Our special gratitude and appreciation goes to Professor Lee Ehrman who patiently read the manuscript, making profuse comments and suggestions that greatly improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Godoy-Herrera.

Additional information

Edited by Yong-Kyu Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arizmendi, C., Zuleta, V., Ruiz-Dubreuil, G. et al. Genetics Analysis of Larval Foraging Behavior in Drosophila Funebris . Behav Genet 38, 525–530 (2008). https://doi.org/10.1007/s10519-008-9217-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-008-9217-0

Keywords

Navigation