Skip to main content
Log in

Intravenous Drug Self-administration in Mice: Practical Considerations

  • Original Paper
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Chronic intravenous drug self-administration in rodents is a useful procedure for predicting the abuse liability of novel drugs in humans, for evaluating candidate treatments for drug abuse and dependence, and for studying the biological basis of addiction. Despite the technical challenge in achieving chronic self-administration behavior in the mouse species, researchers are increasingly using genetically engineered mice to investigate the role of specific genes in abuse-related effects of drugs. This review focuses on recent technical innovations as well as theoretical considerations for comparing intravenous (i.v.) drug self-administration behavior between mouse strains, including mice with targeted mutations. Part I of the present article describes techniques for successfully conducting self-administration studies in mice, including advantages, disadvantages and possible implications of employing various experimental approaches. Part II provides a review of recent data that address how the genetic background on which mutations are expressed may influence results from gene-targeting studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abreu ME, Bigelow GE, Fleisher L, Walsh SL. (2001) Effect of intravenous injection speed on responses to cocaine and hydromorphone in humans. Psychopharmacology (Berl) 154(1):76–84

    Article  CAS  Google Scholar 

  • Alderson HL, Latimer MP, Blaha CD, Phillips AG, Winn P. (2004) An examination of d-amphetamine self-administration in pedunculopontine tegmental nucleus-lesioned rats. Neuroscience 125(2):349–358

    Article  PubMed  CAS  Google Scholar 

  • Arnold JM, Roberts DC (1997) A critique of fixed and progressive ratio schedules used to examine the neural substrates of drug reinforcement. Pharmacol Biochem Behav 57(3):441–447

    Article  PubMed  CAS  Google Scholar 

  • Badiani A, Robinson TE (2004) Drug-induced neurobehavioral plasticity: the role of environmental context. Behav Pharmacol 15(5–6):327–339

    Article  PubMed  CAS  Google Scholar 

  • Balster RL, Schuster CR (1973) Fixed-interval schedule of cocaine reinforcement: effect of dose and infusion duration. J Exp Anal Behav 20(1):119–129

    Article  PubMed  CAS  Google Scholar 

  • Baron SP, Meltzer LT (2001) Mouse strains differ under a simple schedule of operant learning. Behav Brain Res 118(2):143–152

    Article  PubMed  CAS  Google Scholar 

  • Barrett AC, Miller JR, Dohrmann JM, Caine SB (2004) Effects of dopamine indirect agonists and selective D1-like and D2-like agonists and antagonists on cocaine self-administration and food maintained responding in rats. Neuropharmacology 47(Suppl 1):256–273

    Article  PubMed  CAS  Google Scholar 

  • Caggiula AR, Donny EC, Chaudhri N, Perkins KA, Evans-Martin FF, Sved AF (2002) Importance of nonpharmacological factors in nicotine self-administration. Physiol Behav 77(4–5):683–687

    Article  PubMed  CAS  Google Scholar 

  • Caine SB, Bowen CA, Yu G, Zuzga D, Negus SS, Mello NK (2004) Effect of gonadectomy and gonadal hormone replacement on cocaine self-administration in female and male rats. Neuropsychopharmacology 29(5):929–942

    Article  PubMed  CAS  Google Scholar 

  • Caine SB, Koob GF (1993) Modulation of cocaine self-administration in the rat through D-3 dopamine receptors. Science 260:1814–1816

    Article  PubMed  CAS  Google Scholar 

  • Caine SB, Koob GF (1994a) Effects of dopamine D-1 and D-2 antagonists on cocaine self-administration under different schedules of reinforcement in the rat. J Pharmacol Exp Ther 270(1):209–218

    CAS  Google Scholar 

  • Caine SB, Koob GF (1994b) Effects of mesolimbic dopamine depletion on responding maintained by cocaine and food. J Exp Anal Behav 61(2):213–221

    Article  CAS  Google Scholar 

  • Caine SB, Lintz R, Koob GF (1993) Intravenous drug self-administration techniques in animals. In: Sahgal A (ed) Behavioural neuroscience, a practical approach. Oxford University Press, Oxford, pp 117–143

    Google Scholar 

  • Caine SB, Negus SS, Mello NK (1999) Method for training operant responding and evaluating cocaine self-administration behavior in mutant mice. Psychopharmacology (Berl) 147(1):22–24

    Article  CAS  Google Scholar 

  • Caine SB, Negus SS, Mello NK, Patel S, Bristow L, Kulagowski J, Vallone D, Saiardi A, Borrelli E (2002) Role of dopamine D2-like receptors in cocaine self-administration: studies with D2 receptor mutant mice and novel D2 receptor antagonists. J Neurosci 22(7):2977–2988

    PubMed  CAS  Google Scholar 

  • Carney JM, Landrum RW, Cheng MS, Seale TW (1991) Establishment of chronic intravenous drug self-administration in the C57BL/6J mouse. Neuroreport 2(8):477–480

    Article  PubMed  CAS  Google Scholar 

  • Chiamulera C, Borgo C, Falchetto S, Valerio E, Tessari M (1996) Nicotine reinstatement of nicotine self-administration after long-term extinction. Psychopharmacology (Berl) 127(2):102–107

    Article  CAS  Google Scholar 

  • Crawley JN (1999) Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res 835(1):18–26

    Article  PubMed  CAS  Google Scholar 

  • Davey AK, Fawcett JP, Lee SE, Chan KK, Schofield JC (2003) Decrease in hepatic drug-metabolizing enzyme activities after removal of rats from pine bedding. Comp Med 53(3):299–302

    PubMed  CAS  Google Scholar 

  • David V, Polis I, McDonald J, Gold LH (2001) Intravenous self-administration of heroin/cocaine combinations (speedball) using nose-poke or lever-press operant responding in mice. Behav Pharmacol 12(1):25–34

    PubMed  CAS  Google Scholar 

  • Davis WM, Smith SG (1976) Role of conditioned reinforcers in the initiation, maintenance and extinction of drug-seeking behavior. Pavlov J Biol Sci 11(4):222–236

    PubMed  CAS  Google Scholar 

  • de Wit H, Stewart J (1981) Reinstatement of cocaine-reinforced responding in the rat. Psychopharmacology (Berl) 75(2):134–143

    Article  Google Scholar 

  • de Wit H, Stewart J (1983) Drug reinstatement of heroin-reinforced responding in the rat. Psychopharmacology (Berl) 79(1):29–31

    Article  Google Scholar 

  • Deneau G, Yanagita T, Seevers MH (1969) Self-administration of psychoactive substances by the monkey. Psychopharmacologia 16(1):30–48

    Article  PubMed  CAS  Google Scholar 

  • Deroche V, Caine SB, Heyser CJ, Polis I, Koob GF, Gold LH (1997) Differences in the liability to self-administer intravenous cocaine between C57BL/6  ×  SJL and BALB/cByJ mice. Pharmacol Biochem Behav 57(3):429–440

    Article  PubMed  CAS  Google Scholar 

  • Erb S, Shaham Y, Stewart J (1996) Stress reinstates cocaine-seeking behavior after prolonged extinction and a drug-free period. Psychopharmacology (Berl) 128(4):408–412

    Article  CAS  Google Scholar 

  • Erb S, Petrovic A, Yi D, Kayyali H (2006) Central injections of CRF reinstate cocaine seeking in rats after postinjection delays of up to 3 h: an influence of time and environmental context. Psychopharmacology (Berl) 187(1):112–120

    Article  CAS  Google Scholar 

  • Fink-Jensen A, Fedorova I, Wortwein G, Woldbye DP, Rasmussen T, Thomsen M, Bolwig TG, Knitowski KM, McKinzie DL, Yamada M, Wess J, Basile A (2003) Role for M5 muscarinic acetylcholine receptors in cocaine addiction. J Neurosci Res 74(1):91–96

    Article  PubMed  CAS  Google Scholar 

  • Fuchs RA, See RE, Middaugh LD (2003) Conditioned stimulus-induced reinstatement of extinguished cocaine seeking in C57BL/6 mice: a mouse model of drug relapse. Brain Res 973(1):99–106

    Article  PubMed  CAS  Google Scholar 

  • Gerlai R (1996) Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci 19(5):177–181

    Article  PubMed  CAS  Google Scholar 

  • Goldberg SR, Spealman RD, Kelleher RT (1979) Enhancement of drug-seeking behavior by environmental stimuli associated with cocaine or morphine injections. Neuropharmacology 18(12):1015–1017

    Article  PubMed  CAS  Google Scholar 

  • Gracy KN, Dankiewicz LA, Weiss F, Koob GF (2000) Heroin-specific stimuli reinstate operant heroin-seeking behavior in rats after prolonged extinction. Pharmacol Biochem Behav 65(3):489–494

    Article  PubMed  CAS  Google Scholar 

  • Grahame NJ, Cunningham CL (1995) Genetic differences in intravenous cocaine self-administration between C57BL/6J and DBA/2J mice. Psychopharmacology (Berl) 122(3):281–291

    Article  CAS  Google Scholar 

  • Grahame NJ, Cunningham CL (1997) Intravenous ethanol self-administration in C57BL/6J and DBA/2J mice. Alcohol Clin Exp Res 21(1):56–62

    PubMed  CAS  Google Scholar 

  • Grahame NJ, Phillips TJ, Burkhart-Kasch S, Cunningham CL (1995) Intravenous cocaine self-administration in the C57BL/6J mouse. Pharmacol Biochem Behav 51(4):827–834

    Article  PubMed  CAS  Google Scholar 

  • Griffin WC 3rd, Middaugh LD (2003) Acquisition of lever pressing for cocaine in C57BL/6J mice: effects of prior Pavlovian conditioning. Pharmacol Biochem Behav 76(3–4):543–549

    Article  PubMed  CAS  Google Scholar 

  • Griffiths RR, Bradford LD, Brady JV (1979) Progressive ratio and fixed ratio schedules of cocaine-maintained responding in baboons. Psychopharmacology (Berl) 65(2):125–136

    Article  CAS  Google Scholar 

  • Groeben H, Meier S, Tankersley CG, Mitzner W, Brown RH (2004) Influence of volatile anaesthetics on hypercapnoeic ventilatory responses in mice with blunted respiratory drive. Br J Anaesth 92(5):697–703

    Article  PubMed  CAS  Google Scholar 

  • Highfield DA, Mead AN, Grimm JW, Rocha BA, Shaham Y (2002) Reinstatement of cocaine seeking in 129X1/SvJ mice: effects of cocaine priming, cocaine cues and food deprivation. Psychopharmacology (Berl) 161(4):417–424

    Article  CAS  Google Scholar 

  • Hodos W (1961) Progressive ratio as a measure of reward strength. Science 134:943–944

    Article  PubMed  CAS  Google Scholar 

  • Jacobson A (1998) Continuous infusion and chronic catheter access in laboratory animals. Lab Animal 27:37–46

    Google Scholar 

  • Kato S, Wakasa Y, Yanagita T (1987) Relationship between minimum reinforcing doses and injection speed in cocaine and pentobarbital self-administration in crab-eating monkeys. Pharmacol Biochem Behav 28(3):407–410

    Article  PubMed  CAS  Google Scholar 

  • Katz JL (1989) Drugs as reinforcers: pharmacological and behavioral factors. In: Lieberman JM, Cooper SJ (eds) The neuropharmacological basis of reward. Oxford UP, Oxford, pp 165–212

    Google Scholar 

  • Katz JL, Higgins ST (2003) The validity of the reinstatement model of craving and relapse to drug use. Psychopharmacology (Berl) 168(1–2):21–30

    Article  CAS  Google Scholar 

  • Kelleher RT, Goldberg SR (1977) Fixed-interval responding under second-order schedules of food presentation or cocaine injection. J Exp Anal Behav 28(3):221–231

    Article  PubMed  CAS  Google Scholar 

  • Kelly MA, Rubinstein M, Phillips TJ, Lessov CN, Burkhart-Kasch S, Zhang G, Bunzow JR, Fang Y, Gerhardt GA, Grandy DK, Low MJ (1998) Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J Neurosci 18(9):3470–3479

    PubMed  CAS  Google Scholar 

  • Kippin TE, Fuchs RA, See RE (2006) Contributions of prolonged contingent and noncontingent cocaine exposure to enhanced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 187(1):60–67

    Article  CAS  Google Scholar 

  • Kunst G, Graf BM, Schreiner R, Martin E, Fink RH (1999) Differential effects of sevoflurane, isoflurane, and halothane on Ca2+ release from the sarcoplasmic reticulum of skeletal muscle. Anesthesiology 91(1):179–186

    Article  PubMed  CAS  Google Scholar 

  • Kuzmin A, Johansson B (2000) Reinforcing and neurochemical effects of cocaine: differences among C57, DBA, and 129 mice. Pharmacol Biochem Behav 65(3):399–406

    Article  PubMed  CAS  Google Scholar 

  • Lathe R (1996) Mice, gene targeting and behaviour: more than just genetic background. Trends Neurosci 19(5):183–186, discussion 188–189

    Article  PubMed  CAS  Google Scholar 

  • Le AD, Li Z, Funk D, Shram M, Li TK, Shaham Y (2006) Increased vulnerability to nicotine self-administration and relapse in alcohol-naive offspring of rats selectively bred for high alcohol intake. J Neurosci 26(6):1872–1879

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Roberts DC, Morgan D (2005) Sensitization of the reinforcing effects of self-administered cocaine in rats: effects of dose and intravenous injection speed. Eur J Neurosci 22(1):195–200

    Article  PubMed  Google Scholar 

  • Marsch LA, Bickel WK, Badger GJ, Rathmell JP, Swedberg MD, Jonzon B, Norsten-Hoog C (2001) Effects of infusion rate of intravenously administered morphine on physiological, psychomotor, and self-reported measures in humans. J Pharmacol Exp Ther 299(3):1056–1065

    PubMed  CAS  Google Scholar 

  • Mead AN, Zamanillo D, Becker N, Stephens DN (2006) AMPA-receptor GluR1 subunits are involved in the control over behavior by cocaine-paired cues. Neuropsychopharmacology, Advance Online Publication 22 Feb 2006. DOI 10.1038/sj.npp.1301045

  • Mello NK, Negus SS (1996) Preclinical evaluation of pharmacotherapies for treatment of cocaine and opioid abuse using drug self-administration procedures. Neuropsychopharmacology 14(6):375–424

    Article  PubMed  CAS  Google Scholar 

  • Melton DW (1994) Gene targeting in the mouse. Bioessays 16(9):633–638

    Article  PubMed  CAS  Google Scholar 

  • Miner LL (1997) Cocaine reward and locomotor activity in C57BL/6J and 129/SvJ inbred mice and their F1 cross. Pharmacol Biochem Behav 58(1):25–30

    Article  PubMed  CAS  Google Scholar 

  • Negus SS, Mello NK (2003) Effects of chronic d-amphetamine treatment on cocaine- and food-maintained responding under a progressive-ratio schedule in rhesus monkeys. Psychopharmacology (Berl) 167(3):324–332

    CAS  Google Scholar 

  • Nelson RA, Boyd SJ, Ziegelstein RC, Herning R, Cadet JL, Henningfield JE, Schuster CR, Contoreggi C, Gorelick DA (2006) Effect of rate of administration on subjective and physiological effects of intravenous cocaine in humans. Drug Alcohol Depend 82(1):19–24

    Article  PubMed  CAS  Google Scholar 

  • Olsen CM, Winder DG (2006) A method for single-session cocaine self-administration in the mouse. Psychopharmacology (Berl) 187(1):13–21

    Article  CAS  Google Scholar 

  • Panlilio LV, Goldberg SR, Gilman JP, Jufer R, Cone EJ, Schindler CW (1998) Effects of delivery rate and non-contingent infusion of cocaine on cocaine self-administration in rhesus monkeys. Psychopharmacology (Berl) 137(3):253–258

    Article  CAS  Google Scholar 

  • Panlilio LV, Weiss SJ, Schindler CW (2000) Effects of compounding drug-related stimuli: escalation of heroin self-administration. J Exp Anal Behav 73(2):211–224

    Article  PubMed  CAS  Google Scholar 

  • Pelkonen KH, Hanninen OO (1997) Cytotoxicity and biotransformation inducing activity of rodent beddings: a global survey using the Hepa-1 assay. Toxicology 122(1–2):73–80

    Article  PubMed  CAS  Google Scholar 

  • Phillips TJ, Hen R, Crabbe JC (1999) Complications associated with genetic background effects in research using knockout mice. Psychopharmacology (Berl) 147(1):5–7

    Article  CAS  Google Scholar 

  • Ralph RJ, Paulus MP, Geyer MA (2001) Strain-specific effects of amphetamine on prepulse inhibition and patterns of locomotor behavior in mice. J Pharmacol Exp Ther 298:148–155

    PubMed  CAS  Google Scholar 

  • Ranaldi R, Roberts DC (1996) Initiation, maintenance and extinction of cocaine self-administration with and without conditioned reward. Psychopharmacology (Berl) 128(1):89–96

    Article  CAS  Google Scholar 

  • Roberts AJ, Polis IY, Gold LH (1997) Intravenous self-administration of heroin, cocaine, and the combination in Balb/c mice. Eur J Pharmacol 326(2–3):119–125

    Article  PubMed  CAS  Google Scholar 

  • Rocha BA, Odom LA, Barron BA, Ator R, Wild SA, Forster MJ (1998) Differential responsiveness to cocaine in C57BL/6J and DBA/2J mice. Psychopharmacology (Berl) 138(1):82–88

    Article  CAS  Google Scholar 

  • Ruiz-Durantez E, Hall SK, Steffen C, Self DW (2006) Enhanced acquisition of cocaine self-administration by increasing percentages of C57BL/6J genes in mice with a nonpreferring outbred background. Psychopharmacology (Berl) 186(4): 553–560

    Article  CAS  Google Scholar 

  • Sakai EM, Connolly LA, Klauck JA (2005) Inhalation anesthesiology and volatile liquid anesthetics: focus on isoflurane, desflurane, and sevoflurane. Pharmacotherapy 25(12):1773–1788

    Article  PubMed  CAS  Google Scholar 

  • Samaha AN, Mallet N, Ferguson SM, Gonon F, Robinson TE (2004) The rate of cocaine administration alters gene regulation and behavioral plasticity: implications for addiction. J Neurosci 24(28):6362–6370

    Article  PubMed  CAS  Google Scholar 

  • Samaha AN, Yau WY, Yang P, Robinson TE (2005) Rapid delivery of nicotine promotes behavioral sensitization and alters its neurobiological impact. Biol Psychiatry 57(4):351–360

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HD, Anderson SM, Famous KR, Kumaresan V, Pierce RC (2005) Anatomy and pharmacology of cocaine priming-induced reinstatement of drug seeking. Eur J Pharmacol 526(1–3):65–76

    Article  PubMed  CAS  Google Scholar 

  • Schramm-Sapyta NL, Olsen CM, Winder DG (2006) Cocaine self-administration reduces excitatory responses in the mouse nucleus accumbens shell. Neuropsychopharmacology 31(7):1444–1451

    Article  PubMed  CAS  Google Scholar 

  • Shaham Y, Shalev U, Lu L, De Wit H, Stewart J (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl) 168(1–2):3–20

    Article  CAS  Google Scholar 

  • Shalev U, Grimm JW, Shaham Y (2002) Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacol Rev 54(1):1–42

    Article  PubMed  CAS  Google Scholar 

  • Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ (1997) Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet 16(1):19–27

    Article  PubMed  CAS  Google Scholar 

  • Smith A, Piercey M, Roberts DC (1995) Effect of ( − )-DS 121 and (+)-UH 232 on cocaine self-administration in rats. Psychopharmacology (Berl) 120(1):93–98

    Article  CAS  Google Scholar 

  • Spealman RD, Kelleher RT (1979) Behavioral effects of self-administered cocaine: responding maintained alternately by cocaine and electric shock in squirrel monkeys. J Pharmacol Exp Ther 210(2):206–214

    PubMed  CAS  Google Scholar 

  • Thomsen M, Caine SB (2005) Chronic intravenous drug self-administration in rodents. Current Protocols in Neuroscience Unit 9.20

  • Thomsen M, Caine SB (2006) Cocaine self-administration under fixed and progressive ratio schedules of reinforcement: comparison of C57BL/6J, 129X1/SvJ, and 129S6/SvEvTac inbred mice. Psychopharmacology (Berl) 184(2):145–154

    Article  CAS  Google Scholar 

  • Thomsen M, Woldbye DP, Wortwein G, Fink-Jensen A, Wess J, Caine SB (2005) Reduced cocaine self-administration in muscarinic M5 acetylcholine receptor-deficient mice. J Neurosci 25(36):8141–8149

    Article  PubMed  CAS  Google Scholar 

  • Trigo JM, Panayi F, Soria G, Maldonado R, Robledo P (2006) A reliable model of intravenous MDMA self-administration in naive mice. Psychopharmacology (Berl) 184(2):212–220

    Article  CAS  Google Scholar 

  • Tsibulsky VL, Norma AB (2001) Satiety threshold during maintained cocaine self-administration in outbred mice. Neuroreport 12(2):325–328

    Article  PubMed  CAS  Google Scholar 

  • Vargas-Irwin C, Oord EJ, Beardsley PM, Robles JR (2006) A method for analyzing strain differences in acquisition of iv cocaine self-administration in mice. Behav Genet

  • Woods JH, Katz JL, Winger G (1987) Abuse liability of benzodiazepines. Pharmacol Rev 39(4):251–413

    PubMed  CAS  Google Scholar 

  • Woolverton WL, Wang Z (2004) Relationship between injection duration, transporter occupancy and reinforcing strength of cocaine. Eur J Pharmacol 486(3):251–257

    Article  PubMed  CAS  Google Scholar 

  • Yan Y, Nitta A, Mizoguchi H, Yamada K, Nabeshima T (2006) Relapse of methamphetamine-seeking behavior in C57BL/6J mice demonstrated by a reinstatement procedure involving intravenous self-administration. Behav Brain Res 168(1):137–143

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Parts of this manuscript may be similar or identical to previous publications by the authors. Content from Unit 9.20, “Chronic intravenous drug self-administration in rodents” Thomsen and Caine, in: Current Protocols in Neuroscience 2005, is reprinted with kind permission of John Wiley & Son, Inc. Figure 5 and the corresponding discussion of these results were modified from “Cocaine self-administration under fixed and progressive ratio schedules of reinforcement: comparison of C57BL/6J, 129X1/SvJ, and 129S6/SvEvTac inbred mice”, Thomsen and Caine (2006), Psychopharmacology (Berl) 184(2):145–154, with kind permission of Springer Science and Business Media. The authors also wish to gratefully acknowledge the support of the National Institute on Drug Abuse, National Institutes of Health (DA07252, DA12142, DA14528, DA14644, DA17323), The Zaffaroni Foundation and the Lundbeck Foundation. All procedures were carried out in accordance with the NIH Guide for the Care and Use of Laboratory Animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgane Thomsen.

Additional information

Edited by Andrew Holmes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomsen, M., Caine, S.B. Intravenous Drug Self-administration in Mice: Practical Considerations. Behav Genet 37, 101–118 (2007). https://doi.org/10.1007/s10519-006-9097-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-006-9097-0

Keywords

Navigation