Skip to main content
Log in

Establishment of a Battery of Simple Models for Facets of Bipolar Disorder: A Practical Approach to Achieve Increased Validity, Better Screening and Possible Insights into Endophenotypes of Disease

  • Original Paper
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

The lack of appropriate animal models for bipolar disorder (BPD) hinders the translation of novel molecular and genetic findings into the development of new more efficient treatments. Attempts to develop a comprehensive model for BPD did not result in a practical and valid model and at present most studies utilize a limited number of models for specific components of the disorder.

Whereas there is a higher availability of models for the depression pole of BPD, only a few models represent the manic pole with the most frequently used being psychostimulant-induced hyperactivity. This last model had been important in studies of the disease and has some validity but it is clear that by itself cannot be considered to represent mania. Additional models for facets of BPD are needed to allow better screening of new drugs and new mutant mice. Such models may also support the exploration of endophenotypes of BPD and the mechanisms of the disease. An advantage of a battery approach is that each model can be only partially valid when used alone but the combination of a few models may result in strong validity.

The present study suggests that such a battery can be based on existing models previously developed in the context of studying normal behavior or other disorders after an initial validation in the context of BPD. An example for this idea is described using the resident–intruder test for aggression. Present results show that 3 weeks oral treatment with 1.2–2.4% lithium (increasing doses), or 20 g/kg daily dose of valproate, significantly reduced aggressive behavior in resident mice without affecting non-aggressive social interactions. Accordingly, it is suggested that the simplified resident–intruder paradigm may model the aggression related to mania as part of a test battery for facets of BPD. It is further speculated that, pending further research, this paradigm can be combined with additional methods to explore changes in the LHPA axis that may be linked to an important endophenotype of BPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agmo A, Medrano A, Garrido N, Alonso P (1997) GABAergic drugs inhibit amphetamine-induced distractibility in the rat. Pharmacol Biochem Behav 58(1):119–126

    PubMed  CAS  Google Scholar 

  • Akil H (2005) Stressed and depressed. Nat Med 11(2):116–118

    PubMed  CAS  Google Scholar 

  • Anand A, Verhoeff P, Seneca N, Zoghbi SS, Seibyl JP, Charney DS, Innis RB (2000) Brain SPECT imaging of amphetamine-induced dopamine release in euthymic bipolar disorder patients. Am J Psychiatr 157(7):1108–1114

    PubMed  CAS  Google Scholar 

  • Angrist B, Gershon S (1979) Variable attenuation of amphetamine effects by lithium. Am J Psychiatr 136(6):806–810

    PubMed  CAS  Google Scholar 

  • Antelman SM, Caggiula AR, Kiss S, Edwards DJ, Kocan D, Stiller R (1995) Neurochemical and physiological effects of cocaine oscillate with sequential drug treatment: possibly a major factor in drug variability. Neuropsychopharmacology 12(4):297–306

    PubMed  CAS  Google Scholar 

  • Antelman SM, Caggiula AR, Kucinski BJ, Fowler H, Gershon S, Edwards DJ, Austin MC, Stiller R, Kiss S, Kocan D (1998) The effects of lithium on a potential cycling model of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatr 22(3):495–510

    CAS  Google Scholar 

  • Arriaga F, Dugovic C, Wauquier A (1988) Effects of lithium on dopamine behavioural supersensitivity induced by rapid eye movement sleep deprivation. Neuropsychobiology 20(1):23–27

    PubMed  CAS  Google Scholar 

  • Beaulieu JM, Sotnikova TD, Yao WD, Kockeritz L, Woodgett JR, Gainetdinov RR, Caron MG (2004) Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA 101(14):5099–5104. Epub 2004 Mar 24

    PubMed  CAS  Google Scholar 

  • Belmaker RH, Lerer B, Klein E, Hamburger R (1982) The use of behavioral methods in the search for compounds with lithium-like activity. In: Levy A, Spiegelstein MY (eds) Behavioral models and the analysis of drug action. Elsevier, Amsterdam, pp 343–356

    Google Scholar 

  • Belozertseva IV, Sukhotina IA, Vossen JM, Bespalov AY (2004) Facilitation of aggressive and sexual behaviors by saccharin deprivation in rats. Physiol Behav 80(4):531–539

    PubMed  CAS  Google Scholar 

  • Berggren U (1985) Effects of chronic lithium treatment on brain monoamine metabolism and amphetamine-induced locomotor stimulation in rats. J Neural Transm 64(3–4):239–250

    PubMed  CAS  Google Scholar 

  • Berggren U, Engel J, Liljequist S (1981) The effect of lithium on the locomotor stimulation induced by dependence-producing drugs. J Neural Transm 50(2–4):157–164

    PubMed  CAS  Google Scholar 

  • Berggren U, Tallstedt L, Ahlenius S, Engel J (1978) The effect of lithium on amphetamine-induced locomotor stimulation. Psychopharmacology (Berl) 59(1):41–45

    CAS  Google Scholar 

  • Berridge CW, Stalnaker TA (2002) Relationship between low-dose amphetamine-induced arousal and extracellular norepinephrine and dopamine levels within prefrontal cortex. Synapse 46(3):140–149

    PubMed  CAS  Google Scholar 

  • Bhatnagar S, Vining C (2003) Facilitation of hypothalamic–pituitary–adrenal responses to novel stress following repeated social stress using the resident/intruder paradigm. Horm Behav 43(1):158–165

    PubMed  CAS  Google Scholar 

  • Blanchard RJ, Griebel G, Farrokhi C, Markham C, Yang M, Blanchard DC (2005) AVP V1b selective antagonist SSR149415 blocks aggressive behaviors in hamsters. Pharmacol Biochem Behav 80(1):189–194. Epub 2004 Dec 15

    PubMed  CAS  Google Scholar 

  • Borison RL, Sabelli HC, Maple PJ, Havdala HS, Diamond BI (1978) Lithium prevention of amphetamine-induced ‘manic’ excitement and of reserpine-induced ‘depression’ in mice: possible role of 2-phenylethylamine. Psychopharmacology (Berl) 59(3):259–262

    CAS  Google Scholar 

  • Broderick P, Lynch V (1982) Behavioral and biochemical changes induced by lithium and l-tryptophan in muricidal rats. Neuropharmacology 21(7):671–679

    PubMed  CAS  Google Scholar 

  • Cabib S (1993) Strain-dependent behavioural sensitization to amphetamine: role of environmental influences. Behav Pharmacol 4(4):367–374

    PubMed  CAS  Google Scholar 

  • Caggiula AR, Antelman SM, Kucinski BJ, Fowler H, Edwards DJ, Austin MC, Gershon S, Stiller R (1998) Oscillatory-sensitization model of repeated drug exposure: cocaine’s effects on shock-induced hypoalgesia. Prog Neuropsychopharmacol Biol Psychiatr 22(3):511–521

    CAS  Google Scholar 

  • Cappeliez P, Moore E (1990) Effects of lithium on an amphetamine animal model of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatr 14(3):347–358

    CAS  Google Scholar 

  • Carroll BJ, Curtis GC, Mendels J (1976) Neuroendocrine regulation in depression. I. Limbic system-adrenocortical dysfunction. Arch Gen Psychiatr 33(9):1039–1044

    PubMed  CAS  Google Scholar 

  • Chen B, Wang JF, Young LT (2000) Chronic valproate treatment increases expression of endoplasmic reticulum stress proteins in the rat cerebral cortex and hippocampus. Biol Psychiatr 48(7):658–664

    CAS  Google Scholar 

  • Chen G, Yuan PX, Jiang YM, Huang LD, Manji HK (1999) Valproate robustly enhances AP-1 mediated gene expression. Brain Res Mol Brain Res 64(1):52–58

    PubMed  CAS  Google Scholar 

  • Csaba G, Karabelyos C (2001) The effect of a single neonatal treatment (hormonal imprinting) with the antihormones, tamoxifen and mifepristone on the sexual behavior of adult rats. Pharmacol Res 43(6):531–534

    PubMed  CAS  Google Scholar 

  • Daban C, Vieta E, Mackin P, Young AH (2005) Hypothalamic–pituitary–adrenal axis and bipolar disorder. Psychiatr Clin North Am 28(2):469–480

    PubMed  CAS  Google Scholar 

  • Decker S, Grider G, Cobb M, Li XP, Huff MO, El-Mallakh RS, Levy RS (2000) Open field is more sensitive than automated activity monitor in documenting ouabain-induced hyperlocomotion in the development of an animal model for bipolar illness. Prog Neuropsychopharmacol Biol Psychiatr 24(3):455–462

    CAS  Google Scholar 

  • Ebner K, Wotjak CT, Landgraf R, Engelmann M (2005) Neuroendocrine and behavioral response to social confrontation: residents versus intruders, active versus passive coping styles. Horm Behav 47(1):14–21

    PubMed  CAS  Google Scholar 

  • Ebstein RP, Eliashar S, Belmaker RH, Ben-Uriah Y, Yehuda S (1980) Chronic lithium treatment and dopamine-mediated behavior. Biol Psychiatr 15(3):459–467

    CAS  Google Scholar 

  • Einat H (2006) Modelling facets of mania – new directions related to the notion of endophenotypes. J Psychopharmacol 9:9

    Google Scholar 

  • Einat H, Einat D, Allan M, Talangbayan H, Tsafnat T, Szechtman H (1996) Associational and nonassociational mechanisms in locomotor sensitization to the dopamine agonist quinpirole. Psychopharmacology (Berl) 127(2):95–101

    Article  CAS  Google Scholar 

  • Einat H, Karbovski H, Korik J, Tsalah D, Belmaker RH (1999) Inositol reduces depressive-like behaviors in two different animal models of depression. Psychopharmacology (Berl) 144(2):158–162

    CAS  Google Scholar 

  • Einat H, Kofman O, Belmaker RH (2000) Animal models of bipolar disorder: from a single episode to progressive cycling models. In: Myslobodsky M, Weiner I (eds) Contemporary issues in modeling psychopharmacology. Kluwer Academic Publishers, Boston, pp 165–180

    Google Scholar 

  • Einat H, Manji HK (2006) Cellular plasticity cascades: gene to behavior pathways in animal models of bipolar disorder. Biol Psychiatr 59(12):1160–1171

    CAS  Google Scholar 

  • Einat H, Manji HK, Belmaker RH (2003a) New approaches to modeling bipolar disorder. Psychopharmacol Bull 37(1):47–63

    Google Scholar 

  • Einat H, Shaldubina A, Bersudskey Y, Belmaker RH (in press) Prospects for the development of animal models for the study of bipolar disorder. In: Soares JC, Young A (eds) Bipolar disorder: basic mechanisms and therapeutic implications

  • Einat H, Szechtman H (1993) Environmental modulation of both locomotor response and locomotor sensitization to the dopamine agonist quinpirole. Behav Pharmacol 4(4):399–403

    PubMed  CAS  Google Scholar 

  • Einat H, Yuan P, Dogra S, Manji HK (2003b) Does the PKC signaling pathway play a role in the pathophysiology and treatment of bipolar disorder? Biol Psychiatr 53(8 (Supp)):S-399

    Google Scholar 

  • Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L, Manji HK, Chen G (2003c) The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 23(19):7311–7316

    CAS  Google Scholar 

  • Fessler RG, Sturgeon RD, London SF, Meltzer HY (1982) Effects of lithium on behaviour induced by phencyclidine and amphetamine in rats. Psychopharmacology (Berl) 78(4):373–376

    CAS  Google Scholar 

  • Flemenbaum A (1974). Does lithium block the effects of amphetamine? A report of three cases. Am J Psychiatr 131(7):820–821

    PubMed  CAS  Google Scholar 

  • Frye CA, Rhodes ME, Walf A, Harney JP (2002) Testosterone enhances aggression of wild-type mice but not those deficient in type I 5alpha-reductase. Brain Res 948(1–2):165–170

    PubMed  CAS  Google Scholar 

  • Gessa GL, Pani L, Fadda P, Fratta W (1995a) Sleep deprivation in the rat: an animal model of mania. Eur Neuropsychopharmacol 5(Suppl):89–93

    CAS  Google Scholar 

  • Gessa GL, Pani L, Serra G, Fratta W (1995b) Animal models of mania. Adv Biochem Psychopharmacol 49:43–66

    CAS  Google Scholar 

  • Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatr 160(4):636–645

    PubMed  Google Scholar 

  • Gould TD (2006) Lithium and amphetamine: endophenotypes, mouse strain differences and transgenic models. Biol Psychiatr 59(8S):95S

    Google Scholar 

  • Gould TD, Gottesman II (2006) Psychiatric endophenotypes and the development of valid animal models. Genes Brain Behav 5(2):113–119

    Google Scholar 

  • Gould TJ, Keith RA, Bhat RV (2001) Differential sensitivity to lithium’s reversal of amphetamine-induced open-field activity in two inbred strains of mice. Behav Brain Res 118(1):95–105

    PubMed  CAS  Google Scholar 

  • Hagan JJ, Jansen JH, Broekkamp CL (1988) Selective behavioural impairment after acute intoxication with trimethyltin (TMT) in rats. Neurotoxicology 9(1):53–74

    PubMed  CAS  Google Scholar 

  • Hall FS, Huang S, Fong GW, Pert A, Linnoila M (1998) Effects of isolation-rearing on voluntary consumption of ethanol, sucrose and saccharin solutions in Fawn Hooded and Wistar rats. Psychopharmacology (Berl) 139(3):210–216

    CAS  Google Scholar 

  • Hamburger-Bar R, Robert M, Newman M, Belmaker RH (1986) Interstrain correlation between behavioural effects of lithium and effects on cortical cyclic AMP. Pharmacol Biochem Behav 24(1):9–13

    PubMed  CAS  Google Scholar 

  • Harrold JA, Williams G (2003) The cannabinoid system: a role in both the homeostatic and hedonic control of eating? Br J Nutr 90(4):729–734

    PubMed  CAS  Google Scholar 

  • Hasler G, Drevets WC, Manji HK, Charney DS (2004) Discovering endophenotypes for major depression. Neuropsychopharmacology 29(10):1765–1781

    PubMed  CAS  Google Scholar 

  • Hasler G, Gould TD, Drevets WC, Gottesman I, Manji KH (2006) Toward constructing an endophenotype strategy for bipolar disorder. Biol Psychiatr (e-pub ahead of print)

  • Haw C, Stubbs J (2005) A survey of the off-label use of mood stabilizers in a large psychiatric hospital. J Psychopharmacol 19(4):402–407

    PubMed  Google Scholar 

  • Hayaishi O (1999) Prostaglandin D2 and sleep – a molecular genetic approach. J Sleep Res 8(Suppl 1):60–64

    PubMed  Google Scholar 

  • Hilakivi LA, Durcan MJ, Lister RG (1989) Effects of caffeine on social behavior, exploration and locomotor activity: interactions with ethanol. Life Sci 44(8):543–553

    PubMed  CAS  Google Scholar 

  • Huey LY, Janowsky DS, Judd LL, Abrams A, Parker D, Clopton P (1981) Effects of lithium carbonate on methylphenidate-induced mood, behavior, and cognitive processes. Psychopharmacology (Berl) 73(2):161–164

    CAS  Google Scholar 

  • Humphries CR, O’Brien M, Paxinos G (1980) PCA: effects on ejaculation, thermoregulation, salivation, and irritability in rats. Pharmacol Biochem Behav 12(6):851–854

    PubMed  CAS  Google Scholar 

  • Islam MW, Tariq M, Ageel AM, al-Said MS, al-Yhya AM (1991) Effect of Salvia haematodes on sexual behaviour of male rats. J Ethnopharmacol 33(1–2):67–72

    PubMed  CAS  Google Scholar 

  • Judd LL, Akiskal HS (2003) The prevalence and disability of bipolar spectrum disorders in the US population: re-analysis of the ECA database taking into account subthreshold cases. J Affect Disord 73(1–2):123–131

    PubMed  Google Scholar 

  • Kavaliers M, Choleris E, Colwell DD (2001) Brief exposure to female odors “emboldens” male mice by reducing predator-induced behavioral and hormonal responses. Horm Behav 40(4):497–509

    PubMed  CAS  Google Scholar 

  • Knapp RJ, Goldenberg R, Shuck C, Cecil A, Watkins J, Miller C, Crites G, Malatynska E (2002) Antidepressant activity of memory-enhancing drugs in the reduction of submissive behavior model. Eur J Pharmacol 440(1):27–35

    PubMed  CAS  Google Scholar 

  • Krsiak M, Sulcova A, Tomasikova Z, Dlohozkova N, Kosar E, Masek K (1981) Drug effects on attack defense and escape in mice. Pharmacol Biochem Behav 14(Suppl 1):47–52

    PubMed  CAS  Google Scholar 

  • Kupfer DJ (2005) The increasing medical burden in bipolar disorder. JAMA 293(20):2528–2530

    PubMed  CAS  Google Scholar 

  • Langebartels A, Mathias S, Lancel M (2001) Acute effects of melatonin on spontaneous and picrotoxin-evoked sleep-wake behaviour in the rat. J Sleep Res 10(3):211–217

    PubMed  CAS  Google Scholar 

  • Leblanc-Duchin D, Taukulis HK (2004) Behavioral reactivity to a noradrenergic challenge after chronic oral methylphenidate (ritalin) in rats. Pharmacol Biochem Behav 79(4):641–649

    PubMed  CAS  Google Scholar 

  • Legrand R, Fielder R (1973) Role of dominance–submission relationships in shock-induced fighting of mice. J Comp Physiol Psychol 82(3):501–506

    PubMed  CAS  Google Scholar 

  • Lerer B, Globus M, Brik E, Hamburger R, Belmaker RH (1984) Effect of treatment and withdrawal from chronic lithium in rats on stimulant-induced responses. Neuropsychobiology 11(1):28–32

    Article  PubMed  CAS  Google Scholar 

  • Machado-Vieira R, Kapczinski F, Soares JC (2004) Perspectives for the development of animal models of bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatr 28(2):209–224

    Google Scholar 

  • Malatynska E, Knapp RJ (2005) Dominant–submissive behavior as models of mania and depression. Neurosci Biobehav Rev 29(4–5):715–737

    PubMed  Google Scholar 

  • Malick JG (1978) Inhibition of fighting in isolated mice following repeated administration of lithium chloride. Pharmacol Biochem Behav 8(5):579–581

    PubMed  CAS  Google Scholar 

  • Miczek KA, Maxson SC, Fish EW, Faccidomo S (2001) Aggressive behavioral phenotypes in mice. Behav Brain Res 125(1–2):167–181

    PubMed  CAS  Google Scholar 

  • Miczek KA, O’Donnell JM (1978) Intruder-evoked aggression in isolated and nonisolated mice: effects of psychomotor stimulants and l-dopa. Psychopharmacology (Berl) 57(1):47–55

    CAS  Google Scholar 

  • Mikics E, Kruk MR, Haller J (2004) Genomic and non-genomic effects of glucocorticoids on aggressive behavior in male rats. Psychoneuroendocrinology 29(5):618–635

    PubMed  CAS  Google Scholar 

  • Mitchell PJ (2005) Antidepressant treatment and rodent aggressive behaviour. Eur J Pharmacol 526(1–3):147–162. Epub 2005 Nov 14

    PubMed  CAS  Google Scholar 

  • Murphy DL, Brodie HK, Goodwin FK, Bunney WE Jr (1971) Regular induction of hypomania by l-dopa in “bipolar” manic-depressive patients. Nature 229(5280):135–136

    PubMed  CAS  Google Scholar 

  • Nestler EJ, Gould E, Manji H, Buncan M, Duman RS, Greshenfeld HK, Hen R, Koester S, Lederhendler I, Meaney M, Robbins T, Winsky L, Zalcman S (2002) Preclinical models: status of basic research in depression. Biol Psychiatr 52(6):503–528

    Google Scholar 

  • Nikulina EM, Klimek V (1993) Strain differences in clonidine-induced aggressiveness in mice and its interaction with the dopamine system. Pharmacol Biochem Behav 44(4):821–825

    PubMed  CAS  Google Scholar 

  • Nixon MK, Hascoet M, Bourin M, Colombel MC (1994) Additive effects of lithium and antidepressants in the forced swimming test: further evidence for involvement of the serotoninergic system. Psychopharmacology (Berl) 115(1–2):59–64

    CAS  Google Scholar 

  • Oehler J, Jahkel M, Schmidt J (1985) The influence of chronic treatment with psychotropic drugs on behavioral changes by social isolation. Pol J Pharmacol Pharm 37(6):841–849

    PubMed  CAS  Google Scholar 

  • Paxinos G, Burt J, Atrens DM, Jackson DM (1977) 5-Hydroxytryptamine depletion with para-chlorophenylalanine: effects on eating, drinking, irritability, muricide, and copulation. Pharmacol Biochem Behav 6(4):439–447

    PubMed  CAS  Google Scholar 

  • Persinger MA (1994) Maintained hypersexuality between male rats following chronically induced limbic seizures: implications for bisexuality in complex partial epileptic seizures. Psychol Rep 74(2):647–652

    PubMed  CAS  Google Scholar 

  • Pich EM, Heinrichs SC, Rivier C, Miczek KA, Fisher DA, Koob GF (1993) Blockade of pituitary–adrenal axis activation induced by peripheral immunoneutralization of corticotropin-releasing factor does not affect the behavioral response to social defeat stress in rats. Psychoneuroendocrinology 18(7):495–507

    PubMed  CAS  Google Scholar 

  • Pittman KJ, Jakubovic A, Fibiger HC (1984) The effects of chronic lithium on behavioral and biochemical indices of dopamine receptor supersensitivity in the rat. Psychopharmacology (Berl) 82(4):371–377

    CAS  Google Scholar 

  • Popova NK, Vishnivetskaya GB, Ivanova EA, Skrinskaya JA, Seif I (2000) Altered behavior and alcohol tolerance in transgenic mice lacking MAO A: a comparison with effects of MAO A inhibitor clorgyline. Pharmacol Biochem Behav 67(4):719–727

    PubMed  CAS  Google Scholar 

  • Post RM, Weiss SR (1989) Sensitization, kindling, and anticonvulsants in mania. J Clin Psychiatr 50(Suppl):23–30; discussion 45–47

    Google Scholar 

  • Quartermain D, Stone EA, Charbonneau G (1996) Acute stress disrupts risk assessment behavior in mice. Physiol Behav 59(4–5):937–940

    PubMed  CAS  Google Scholar 

  • Ralph-Williams RJ, Paulus MP, Zhuang X, Hen R, Geyer MA (2003) Valproate attenuates hyperactive and perseverative behaviors in mutant mice with a dysregulated dopamine system. Biol Psychiatr 53(4):352–359

    CAS  Google Scholar 

  • Satoh S, Matsumura H, Nakajima T, Nakahama K, Kanbayashi T, Nishino S, Yoneda H, Shigeyoshi Y (2003) Inhibition of rostral basal forebrain neurons promotes wakefulness and induces FOS in orexin neurons. Eur J Neurosci 17(8):1635–1645

    PubMed  Google Scholar 

  • Shaldivin A, Kaptsan A, Belmaker RH, Einat H, Grisaru N (2001) Transcranial magnetic stimulation in an amphetamine hyperactivity model of mania. Bipolar Disord 3(1):30–34

    PubMed  CAS  Google Scholar 

  • Shaldubina A, Einat H, Szechtman H, Shimon H, Belmaker RH (2002) Preliminary evaluation of oral anticonvulsant treatment in the quinpirole model of bipolar disorder. J Neural Transm 109(3):433–440

    PubMed  CAS  Google Scholar 

  • Sheard MH (1973) Aggressive behavior: modification by amphetamine, p-chlorophenylalanine and lithium in rats. Agressologie 14(5):327–330

    PubMed  CAS  Google Scholar 

  • Sheard MH (1975) Lithium in the treatment of aggression. J Nerv Ment Dis 160(2–1):108–118

    PubMed  CAS  Google Scholar 

  • Soderpalm AH, Hansen S (1998) Benzodiazepines enhance the consumption and palatability of alcohol in the rat. Psychopharmacology (Berl) 137(3):215–222

    CAS  Google Scholar 

  • Szechtman H, Eilam D (2005) Psychiatric models. In: Whishaw IQ, Kolb B (eds) The behavior of the laboratory rat: a handbook with tests. Oxford University Press Inc., London, pp 462–474

    Google Scholar 

  • Tecce JJ, Cole JO (1974) Amphetamine effects in man: paradoxical drowsiness and lowered electrical brain acitivity (CNV). Science 185(149):451–453

    PubMed  CAS  Google Scholar 

  • Tecott LH, Nestler EJ (2004) Neurobehavioral assessment in the information age. Nat Neurosci 7(5):462–466

    PubMed  CAS  Google Scholar 

  • Ulrich RE, Craine WH (1964) Behavior: persistence of shock-induced aggression. Science 143:971–973

    PubMed  CAS  Google Scholar 

  • Van Kammen DP, Murphy DL (1975) Attenuation of the euphoriant and activating effects of d- and l-amphetamine by lithium carbonate treatment. Psychopharmacologia 44(3):215–224

    PubMed  CAS  Google Scholar 

  • Wehr TA, Sack DA, Rosenthal NE (1987) Sleep reduction as a final common pathway in the genesis of mania. Am J Psychiatr 144(2):201–204

    PubMed  CAS  Google Scholar 

  • Willner P (1991) Behavioral models in psychopharmacology. In: Willner P (ed) Behavioral models in psychopharmacology: theoretical, industrial and clinical perspectives. Cambridge University Press, Cambridge, pp 3–19

    Google Scholar 

  • Woldbye DP, Ulrichsen J, Haugbol S, Bolwig TG (2002) Ethanol withdrawal in rats is attenuated by intracerebroventricular administration of neuropeptide Y. Alcohol Alcohol 37(4):318–321

    PubMed  CAS  Google Scholar 

  • Yuan P, Chen G, Manji HK (1999) Lithium activates the c-Jun NH2-terminal kinases in vitro and in the CNS in vivo. J Neurochem 73(6):2299–2309

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Anita Weiers, Alyssa Manecke and Nandita Rahman for their technical help. HE is a recipient of the National Alliance for Research on Schizophrenia and Depression 2005 Young Investigator Award. The study was partially supported by the University of Minnesota Graduate School Grant in Aid of Research to H. E. Support was also received from the University of Minnesota Undergraduate Research Opportunities Program Award to A. Manecke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim Einat.

Additional information

Edited by Andrew Holmes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einat, H. Establishment of a Battery of Simple Models for Facets of Bipolar Disorder: A Practical Approach to Achieve Increased Validity, Better Screening and Possible Insights into Endophenotypes of Disease. Behav Genet 37, 244–255 (2007). https://doi.org/10.1007/s10519-006-9093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-006-9093-4

Keywords

Navigation