Skip to main content
Log in

Multivariate Analysis of Temporal Descriptions of Open-field Behavior in Wild-derived Mouse Strains

  • Published:
Behavior Genetics Aims and scope Submit manuscript

The open-field test is a commonly used apparatus in many behavioral studies. However, in most studies, temporal changes of details of behavior have been ignored. We thus examined open-field behavior as measured by both conventional indices and 12 ethograms supported by detailed temporal observation. To obtain a broader understanding, we used genetically diverse mouse strains: 10 wild-derived mouse strains (PGN2, BFM/2, HMI, CAST/Ei, NJL, BLG2, CHD, SWN, KJR, MSM), one strain derived from the so-called fancy mouse (JF1), and one standard laboratory strain, C57BL/6. Conventional measurements revealed a variety of relationships: some strains did not show the hypothesized association between high ambulation, longer stay in the central area, and low defecation. Our ethological approach revealed that some behaviors, such as freezing and jumping, were not observed in C57BL/6 but were seen in some wild-derived strains. Principal component analysis which included temporal information indicated that these strains had varied temporal patterns of habituation to novelty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. The
Fig. 2. Two-dimensional

Similar content being viewed by others

References

  • Antoniou K., Kafetzopoulos E., (1991). A comparative study of the behavioral effects of d-amphetamine and apomorphine in the rat Pharmacol. Biochem. Biobehav. 39:61–70

    Article  CAS  Google Scholar 

  • Antoniou K., Kafetzopoulos E., Papadopoulou-Daifoti Z., Hyphantis T., Marselos M., (1998). d-Amphetamine, cocaine and caffeine: a comparative study of acute effects on locomotor activity and behavioural patterns in rats Neurosci. Biobehav. Rev. 23:189–196

    Article  PubMed  CAS  Google Scholar 

  • Archer J., (1973). Tests for emotionality in rats and mice: a review Anim. Behav. 21:205–235

    Article  PubMed  CAS  Google Scholar 

  • Bindra D., (1961). Components of general activity and the analysis of behavior Psychol. Rev. 68:205–215

    Article  Google Scholar 

  • Bindra D., Spinner N., (1958). Response to different degrees of novelty: the incidence of various activities J. Exp. Anal. Behav. 1:341–350

    Article  PubMed  CAS  Google Scholar 

  • Blanchard D. C., Blanchard R. J., Rodgers R. J., (1991). Risk assessment and animal models of anxiety In Olivier B., Mos J., Slangen J. L., (eds), Animal models in psychopharmacology. Advances in pharmacological sciences Birkhauser Verlag Basel, Boston pp. 117–134

    Google Scholar 

  • Blanchard R. J., Yudko E. B., Rodgers R. J., Blanchard D. C., (1993). Defense system psychopharmacology: an ethological approach to the pharmacology of fear and anxiety Behav. Brain Res. 58:155–165

    Article  PubMed  CAS  Google Scholar 

  • Blizard D. A., (1971). Situational determinants of open-field behavior in Mus musculus Br. J. Psychol. 62:245–252

    Google Scholar 

  • Bonhomme F., Guénet J.-L., (1996). The laboratory mouse and its wild relatives In Lyon M. F., Rastan S., Brown S. D. M., (eds), Genetic variants and strains of the laboratory mouse Oxford University Press Oxford, pp. 1577–1596

    Google Scholar 

  • Broadhurst P. J., (1957). Determinants of emotionality in the rat: I. Situational factors Br. J. Psychol. 48:1–12

    PubMed  CAS  Google Scholar 

  • Broadhurst P. L., (1960). Experiments in psychogenetics: applications of biometrical genetics to the inheritance of behavior In Eysenck H. J., (eds), Experiments in personality: psychogenetics and psychopharmacology1 Routledge and Kegan Paul London pp. 1–102

    Google Scholar 

  • Bruell J. H., (1969) Genetic and adaptive significance of emotional defecation in mice Ann. N.Y. Acad. Sci. 159:825–830

    Article  PubMed  CAS  Google Scholar 

  • Carola V., D’Olimpio F., Brunamonti E., Mangia F., Renzi P., (2002). Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behavior in inbred mice Behav. Brain Res. 134:49–57

    Article  PubMed  Google Scholar 

  • Choleris E., Thomas A. W., Kavaliers M., Prato F. S., (2001). A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide, and an extremely low frequency pulsed magnetic field Neurosci. Biobehav. Rev. 25:235–260

    Article  PubMed  CAS  Google Scholar 

  • Collins, R. L. (1966). What else does the defecation score measure? Proc. 74th Ann. Con. A. P. A., pp. 147–148

  • Crawley J. N., Belknap J. K., Collins A., Crabbe J. C., Frankel W., Henderson N., Hitzemann R. J., Maxson S. C., Miner L. L., Silva A. J., Wehner J. M., Wynshaw-Boris A., Paylor R., (1997). Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies Psychopharmacology 132:107–124

    Article  PubMed  CAS  Google Scholar 

  • Crusio W. E., Schwegler H., van Ableen J. H. F., (1989). Behavioral responses to novelty and structural variation of the hippocampus in mice. I. Quantitative-genetic analysis of behavior in the open-field Behav. Brain Res. 32:75–80

    Article  PubMed  CAS  Google Scholar 

  • DeFries J. C., Hegman J. P., (1970) Quantitative genetics and behavior: overview and perspective In Hirsch J., (eds), Behavior-genetic analysis McGraw-Hill New York pp. 322–339

    Google Scholar 

  • Dudek B. C., Adams N., Boice R., Abbott M.E., (1983). Genetic influences on digging behaviors in mice (Mus musculus) in laboratory and seminatural settings J. Comp. Psychol. 97: 249–259

    Article  PubMed  CAS  Google Scholar 

  • Dulawa S. C., Grandy D. K., Low M. J., Paulus M. P., Geyer M. A., (1999). Dopamine D4 receptor-knock-out mice exhibit reduced exploration of novel stimuli J. Neurosci. 19:9550–9556

    PubMed  CAS  Google Scholar 

  • Espejo E. F., (1997). Structure of the mouse behavior on the elevated plus-maze test of anxiety Behav. Brain Res. 86:105–112

    Article  PubMed  Google Scholar 

  • Fernandes C., Liu L., Paya-Cano J. L., Gregorová S., Forejt J., Schalkwyk L. C., (2004). Behavioral characterization of wild derived male mice (Mus musculus musculus) of the PWD/Ph inbred strain: high exploration compared to C57BL/6J Behav. Genet. 34:621–629

    Article  PubMed  Google Scholar 

  • Fernández-Teruel A., Escorihuela R. M., Gray J. A., Aguilar R., Gil L., Giménez-Llort L., Tobena A., Bhomra A., Nicod A., Mott R., Driscoll P., Dawson G. R., Flint J., (2002). A quantitative trait locus influencing anxiety in the laboratory rat Genome Res. 12:618–626

    Article  PubMed  Google Scholar 

  • Flint J., Corley R., DeFries J. C., Fulker D. W., Gray J. A., Miller S., Collins A. C., (1995). A simple genetic basis for a complex psychological trait in laboratory mice Science 269:1432–1435

    Article  PubMed  CAS  Google Scholar 

  • Furuse T., Blizard D. A., Moriwaki K., Miura Y., Yagasaki K., Shiroishi T., Koide T., (2002a). Genetic diversity underlying capsaicin intake in the Mishima battery of mouse strains Brain Res. Bull. 57:49–55

    Article  CAS  Google Scholar 

  • Furuse T., Takano-Shimizu T., Moriwaki K., Shiroishi T., Koide T., (2002b). QTL analyses of spontaneous activity by using mouse strains from Mishima battery Mamm. Genome 13:411–415

    Article  CAS  Google Scholar 

  • Furuse T., Miura Y., Yagasaki K., Shiroishi T., Koide T., (2003). Identification of QTLs for differential capsaicin sensitivity between mouse strains KJR and C57BL/6 Pain 105:169–175

    Article  PubMed  CAS  Google Scholar 

  • Gallup G. G., Ledbetter D. H., Maser J. D., (1976) Strain differences among chickens in tonic immobility: evidence for an emotionality component J. Comp. Physiol. Psychol. 11:1075–1081

    Article  Google Scholar 

  • Gray J. A., (1965). A time-sample study of the components of general activity in selected strains of rats Can. J. Psychol. 19:74–82

    PubMed  CAS  Google Scholar 

  • Gershenfeld H. K., Neumann P. E., Mathis C., Crawley J. N., Li Z., Paul S. M., (1997). Mapping quantitative trait loci for open-field behavior in mice Behav. Genet. 27:201–210

    Article  PubMed  CAS  Google Scholar 

  • Gershenfeld H. K., Paul S. M., (1997). Mapping quantitative trait loci for fear-like behaviors in mice Genomics 46:1–8

    Article  PubMed  CAS  Google Scholar 

  • Hall C. S., (1934). Emotional behavior in the rat : I. Defecation and urination as measures of individual differences in emotionality J. Comp. Psychol. 18:385–403

    Article  Google Scholar 

  • Hall C. S., (1936). Emotional behavior in the rat : III. The relationship between emotionality and ambulatory activity J. Comp. Psychol. 22:345–352

    Article  Google Scholar 

  • Hall C. S., (1951). The genetics of behavior In Stevens S. S., (eds), Handbook of experimental psychology John Wiley & Sons Inc New York pp. 304–330

    Google Scholar 

  • Holmes A., Parmigiani S., Ferrari P. F., Palanza P., Rodgers R. J., (2000). Behavioral profile of wild mice in the elevated plus-maze test for anxiety Physiol. Behav. 71:509–516

    Article  PubMed  CAS  Google Scholar 

  • Koide T., Moriwaki K., Uchida L., Mita A., Sagai T., Yonekawa H., Katoh H., Miyashita N., Tsuchiya N., Nielsen T. J., Shiroishi T., (1998). A new inbred strain JF1 established from Japanese fancy mouse carrying the classic piebald allele Mamm. Genome 9:15–19

    Article  PubMed  CAS  Google Scholar 

  • Koide T., Moriwaki K., Ikeda K., Niki H., Shiroishi T., (2000). Multi-phenotype behavioral characterization of inbred strains derived from wild stocks of Mus musculus Mamm. Genome 11:664–670

    Article  PubMed  CAS  Google Scholar 

  • Logue S. F., Owen E. H., Rasmussen D. L., Wehner J. M., (1997). Assessment of locomotor activity, acoustic and tactile startle, and prepulse inhibition of startle in inbred mouse strains and F1 hybrids: implications of genetic background for single gene and quantitative trait loci analysis Neuroscience 80:1075–1086

    Article  PubMed  CAS  Google Scholar 

  • Makino, J. (1983). Behavior genetic approach for the open-field behavior in the mouse. Ph.D. thesis, University of Tsukuba

  • Makino J., Kato K., Maes F. W., (1991). Temporal structure of open field behavior in inbred strains of mice Jpn. Psychol. Res. 33:145–152

    Google Scholar 

  • Marks M. J., Miner L. L., Cole-Harding S., Burch J. B., Collins A. C., (1986). A genetic analysis of nicotine effects on open field activity Pharmacol. Biochem. Behav. 24:743–749

    Article  PubMed  CAS  Google Scholar 

  • Moriwaki K., (1994)Wild mouse from a geneticist’s viewpoint In Moriwaki K., Shiroishi T., Yonekawa H., (eds), Genetics in wild mice Japan Sci. Soc. Press/S. Karger Tokyo/Baselpp. xiii–xxv

    Google Scholar 

  • Ogasawara M., Imanishi T., Moriwaki K., Gaudieri S., Tsuda H., Hashimoto H., Shiroishi T., Gojobori T., Koide T., (2005) Length variation of CAG/CAA triplet repeats in 50 genes among 16 inbred mouse strains Gene 349:107–119

    Article  PubMed  CAS  Google Scholar 

  • Pan R., Oxnard C., (2004) Craniodental variation in the African macaque, with reference to various Asian species Folia Primatol. 75: 355–375

    Article  PubMed  Google Scholar 

  • Pardon M., Pérez-Diaz F., Joubert C., Cohen-Salmon C., (2000). Age-dependent effects of a chronic ultramild stress procedure on open-field behaviour in B6D2F1 female mice Physiol. Behav. 70:7–13

    Article  PubMed  CAS  Google Scholar 

  • Ramos A., Correia E. C., Izídio G. S., Brüske G. R., (2003). Genetic selection of two new rat lines displaying different levels of anxiety-related behaviors Behav. Genet. 33:657–668

    Article  PubMed  Google Scholar 

  • Ramos A., Moisan M.-P., Chaouloff F., Mormède C., Mormède P., (1999). Identification of female-specific QTLs affecting an emotionality-related behavior in rats Mol. Psychiatr. 4:453–462

    Article  CAS  Google Scholar 

  • Rodgers R. J., Johnson N. J. T., (1995). Factor analysis of spatiotemporal and ethological measures in the murine elevated plus-maze test of anxiety Pharmacol. Biochem. Behav. 52:297–303

    Article  PubMed  CAS  Google Scholar 

  • Royce J. R., (1977). On the construct validity of open-field measures Psychol. Bull. 84:1098–1106

    Article  Google Scholar 

  • Streng J., (1971). Open-field behavior in four inbred mouse strains Can. J. Psychol. 25:62–68

    PubMed  CAS  Google Scholar 

  • Suarez D. S., Gallup G. G., (1982) Open-field behavior in guinea pigs: developmental and adaptive considerations Behav. Proc. 7:267–274

    Article  Google Scholar 

  • Talbot C. J., Nicod A., Cherny S. S., Fulker D. W., Collins A. C., Flint J., (1999). High-resolution mapping of quantitative trait loci in outbred mice Nat. Genet. 21:305–308

    Article  PubMed  CAS  Google Scholar 

  • Thompson W. R., (1953). The inheritance of behavior: behavioral differences in fifteen mouse strains Can. J. Psychol. 7:145–155

    PubMed  CAS  Google Scholar 

  • Treit D., Fundytus M., (1989). Thigmotaxis as a test for anxiolytic activity in rats Pharmacol. Biochem. Behav. 31:59–62

    Google Scholar 

  • Trullas R., Skolnick P., (1993). Differences in fear motivated behaviors among inbred mouse strains Psychopharmacology 111:323–331

    Article  PubMed  CAS  Google Scholar 

  • Turri M. G., Henderson N. D., DeFries J. C., Flint J., (2001a). Quantitative trait locus mapping in laboratory mice derived from a replicated selection experiment for open-field activity Genetics 158:1217–1226

    CAS  Google Scholar 

  • Turri M. G., Datta S. R., DeFries J. C., Henderson N. D., Flint J., (2001b) QTL analysis identifies multiple behavioral dimensions in ethological tests of anxiety in laboratory mice Curr. Biol. 11:725–734

    Article  CAS  Google Scholar 

  • Vadasz C., Kobor G., Lajtha A., (1992). Motor activity and the mesotelencephalic dopamine function. I. High-resolution temporal and genetic analysis of open-field behavior Behav. Brain Res. 48:29–39

    Article  PubMed  CAS  Google Scholar 

  • van Abeelen J. H. F., (1963). Mouse mutants studied by means of ethological methods: I. Ethogram Genetica 34:79–94

    Article  Google Scholar 

  • van Oortmerssen G. A., (1971) Biological significance, genetics and evolutionary origin of variability in behavior within and between inbred strains of mice (Mus musculus) Behavior 38:1–92

    Article  Google Scholar 

  • Walsh R. N., Cummins R. A., (1976). The open-field test: a critical review Psychol. Bull. 83:482–504

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to D. A. Blizard for comments on the manuscript, K. Moriwaki for his considerable work in establishing wild-derived strains, and to T. Takano for statistical advice. We thank all members of the Mouse Genomics Resource Laboratory at NIG for rearing the mice and for supporting this study. This study was supported by the Japan Society for the Promotion of Science, and by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology. This study is contribution number 2502 from the NIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Koide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, A., Kato, K., Makino, J. et al. Multivariate Analysis of Temporal Descriptions of Open-field Behavior in Wild-derived Mouse Strains. Behav Genet 36, 763–774 (2006). https://doi.org/10.1007/s10519-005-9038-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-005-9038-3

Keywords

Navigation