Skip to main content
Log in

The Inositol 1,4,5-triphosphate kinase1 Gene Affects Olfactory Reception in Drosophila melanogaster

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

The Inositol 1,4,5-triphosphate (IP3) route is one of the two main transduction cascades that mediate olfactory reception in Drosophila melanogaster. The activity of IP3 kinase1 reduces the levels of this substrate by phosphorylation into inositol 1,3,4,5-tetrakiphosphate (IP4). We show here that the gene is expressed in olfactory sensory organs as well as in the rest of the head. To evaluate in vivo the olfactory functional effects of up-regulating IP3K1, individuals with directed genetic changes at the reception level only were generated using the UAS/Gal4 method. In this report, we described the consequences in olfactory perception of overexpressing the IP3Kinase1 gene at eight different olfactory receptor-neuron subsets. Six out of the eight studied Gal-4/UAS-IP3K1 hybrids displayed abnormal behavioral responses to ethyl acetate, acetone, ethanol or propionaldehyde. Specific behavioral defects corresponded to the particular neuronal olfactory profile. These data confirm the role of the IP3kinase1 gene, and consequently the IP3 transduction cascade, in mediating olfactory information at the reception level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Acebes A., Ferrus A. (2001). Increasing the number of synapses modifies olfactory perception in Drosophila. J. Neurosci. 21:6264–6273

    PubMed  CAS  Google Scholar 

  • Alcorta E. (1991). Characterization of the electroantennogram in Drosophila melanogaster and its use for identifying olfactory capture and transduction mutants. J. Neurophysiol. 65:702–14

    PubMed  CAS  Google Scholar 

  • Alcorta E., Rubio J. (1989). Intrapopulational variation of olfactory responses in Drosophila melanogaster. Behav. Genet. 19:285–299

    Article  PubMed  CAS  Google Scholar 

  • Ayer R. K. Jr., Carlson J. (1991). acj6: a gene affecting olfactory physiology and behavior in Drosophila. Proc. Natl. Acad. Sci. USA 88:5467–71

    Article  PubMed  CAS  Google Scholar 

  • Bernhard N., van der Kooy D. (2000). A behavioral and genetic dissection of two forms of olfactory plasticity in Caenorhabditis elegans: adaptation and habituation. Learn Mem. 7:199–212

    Article  PubMed  CAS  Google Scholar 

  • Brand A. H., Perrimon N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    PubMed  CAS  Google Scholar 

  • Breer H. (2003). Sense of smell: recognition and transduction of olfactory signals. Biochem. Soc. Trans. 31:113–116

    Article  PubMed  CAS  Google Scholar 

  • Brehm M. A., Schreiber I., Bertsch U., Wegner A., Mayr G. W. (2004). Identification of the actin-binding domain of Ins(1,4,5)P3 3-kinase isoform B (IP3K-B). Biochem. J. 382:353–362

    Article  PubMed  CAS  Google Scholar 

  • de Bruyne M., Foster K., Carlson J. R. (2001). Odor coding in the Drosophila antenna. Neuron 30:537–552

    Article  PubMed  Google Scholar 

  • Del Toro R., Levitsky K. L., López-Barneo J., Chiara M. D. (2003). Induction of T-type calcium channel gene expression by chronic hypoxia. J. Biol. Chem. 278:22316–22324

    Article  PubMed  CAS  Google Scholar 

  • Deshpande M., Venkatesh K., Rodrigues V., Hasan G. (2000) The inositol 1,4,5-trisphosphate receptor is required for maintenance of olfactory adaptation in Drosophila antennae. J. Neurobiol. 43:282–288

    Article  PubMed  CAS  Google Scholar 

  • Devaud J. M., Keane J., Ferrus A. (2003) Blocking sensory inputs to identified antennal glomeruli selectively modifies odorant perception in Drosophila. J. Neurobiol. 56:1–12

    Article  PubMed  CAS  Google Scholar 

  • Dorak, M.T. (2003). http://dorakmt.tripod.com/genetics/realtime.html

  • Fouts D., Ganguly R., Gutierrez A. G., Lucchesi J. C., Manning J. E. (1988). Nucleotide sequence of the Drosophila glucose-6-phosphate dehydrogenase gene and comparison with the homologous human gene. Gene 63:261–275

    Article  PubMed  CAS  Google Scholar 

  • Giulietti A., Overbergh L., Valckx D., Decallone B., Bouillon R., Mathieu C. (2001). An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25:386–401

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Diaz C., Martin F., Alcorta E. (2004). The cAMP transduction cascade mediates olfactory reception in Drosophila melanogaster. Behav. Genet. 34:395–406

    Article  PubMed  Google Scholar 

  • Harris W. A., Stark W. S. (1977). Hereditary retinal degeneration in Drosophila melanogaster. A mutant defect associated with the phototransduction process. J. Gen. Physiol. 69:261–91

    Article  PubMed  CAS  Google Scholar 

  • Hasan G., Rosbash M. (1992). Drosophila homologs of two mammalian intracellular Ca2+-release channels: identification and expression patterns of the inositol 1,4,5-triphosphate and the ryanodine receptor genes. Development 116:967–975

    PubMed  CAS  Google Scholar 

  • Hildebrand J. G., Shepherd G. M. (1997). Mechanisms of olfactory discrimination: converging evidence for common principles across Phyla. Annu. Rev. Neurosci. 20:595–631

    Article  PubMed  CAS  Google Scholar 

  • Keller A., Sweeney S. T., Zars T., O’Kane C. J., Heisenberg M. (2002) Targeted expression of tetanus neurotoxin interferes with behavioral responses to sensory input in Drosophila. J. Neurobiol. 50:221–233

    Article  PubMed  CAS  Google Scholar 

  • Martin F., Kim M. S., Hovemann B., Alcorta E. (2002). Factor analysis of olfactory responses in Drosophila melanogaster enhancer-trap lines as a method for ascertaining common reception components for different odorants. Behav. Genet. 32:79–88

    Article  PubMed  Google Scholar 

  • Martin F., Charro M. J., Alcorta E. (2001). Mutations affecting the cAMP transduction pathway modify olfaction in Drosophila. J. Comp. Physiol. A 187:359–370

    Article  PubMed  CAS  Google Scholar 

  • Matthews H. R., Reisert J. (2003) Calcium, the two-faced messenger of olfactory transduction and adaptation. Curr. Opin. Neurobiol. 13:469–475

    Article  PubMed  CAS  Google Scholar 

  • Monnier V., Girardot F., Audin W., Tricoire H. (2002) Control of oxidative stress resistance by IP3 kinase in Drosophila melanogaster. Free Radic Biol. Med. 33:1250–1259

    Article  PubMed  CAS  Google Scholar 

  • Nalaskowski M. M., Mayr G. W.(2004). The families of kinases removing the Ca2+ releasing second messenger Ins(1,4,5)P3. Curr. Mol. Med. 4:277–290

    Article  PubMed  CAS  Google Scholar 

  • Pak W. L., Grossfield J., Arnold K. S. (1970). Mutants of the visual pathway of Drosophila melanogaster. Nature 227:518–520

    Article  PubMed  CAS  Google Scholar 

  • Prasad B. C., Reed R. R. (1999). Chemosensation: molecular mechanisms in worms and mammals. Trends Genet. 15:150–153

    Article  PubMed  CAS  Google Scholar 

  • Riesgo-Escovar J. R., Woodard C., Carlson J. R. (1994). Olfactory physiology in the Drosophila maxillary palp requires the visual system gene rdgB. J. Comp. Physiol. A 175:687–693

    Article  PubMed  CAS  Google Scholar 

  • Riesgo-Escovar J., Raha D., Carlson J. R. (1995). Requirement for a phospholipase C in odor response: overlap between olfaction and vision in Drosophila. Proc. Natl. Acad. Sci. USA 92:2864–2868

    Article  PubMed  CAS  Google Scholar 

  • Ronnett G. V., Moon C. (2002). G proteins and olfactory signal transduction. Annu. Rev. Physiol. 64:189–222

    Article  PubMed  CAS  Google Scholar 

  • Schild D., Restrepo D. (1998). Transduction mechanisms in vertebrate olfactory receptor cells. Physiol. Rev. 78:429–466

    PubMed  CAS  Google Scholar 

  • Shortridge R. D., Yoon J., Lending C., Bloomquist B. T., Perdew M. H., Pak W. L. (1991) A Drosophila phospholipase C gene that is expressed in the central nervous system. J. Biol. Chem. 266:12474–12480

    PubMed  CAS  Google Scholar 

  • Störtkuhl K. F., Hovemann B. T., Carlson J. R. (1999) Olfactory adaptation depends on the Trp Ca2+ channel in Drosophila. J. Neurosci. 19:4839–4846

    PubMed  Google Scholar 

  • Sweeney S. T., Broadie K., Keane J., Niemann H., O’Kane C. J. (1995) Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14:341–351

    Article  PubMed  CAS  Google Scholar 

  • Thackeray J. R., Gaines P. C., Ebert P., Carlson J. R. (1998). Small wing encodes a phospholipase C that acts as a negative regulator of R7 development in Drosophila. Development 125:5033–5042

    PubMed  CAS  Google Scholar 

  • Woodard C., Alcorta E., Carlson J. R. (1992). The rdgB gene of Drosophila: a link between vision and olfaction. J. Neurogenetics 8:17–31

    Article  CAS  Google Scholar 

  • Yoshikawa S., Tanimura T., Miyawaki A., Nakamura M., Yuzaki M., Furuichi T., Mikoshiba K. (1992). Molecular cloning and characterization of the Inositol 1,4,5-triphosphate receptor in Drosophila melanogaster. J. Biol. Chem. 267:16613–16619

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank B. Hovemann, H. Tricoire and the Bloomington stock center for kindly providing fly stocks. We thank M.D. Chiara and M. Canel for assistance with the quantitative m-RNA analysis and A. Dominguez and J.F. Vazquez for helping us with the molecular work. This study was funded by the Spanish Ministry of Science and Technology (PB97-1269 and BFI2002-00419) and the Spanish Ministry of Health (FISS-03-RED-C03/06). C. Gomez-Diaz was supported by a FICYT fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Alcorta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomez-Diaz, C., Martin, F. & Alcorta, E. The Inositol 1,4,5-triphosphate kinase1 Gene Affects Olfactory Reception in Drosophila melanogaster . Behav Genet 36, 309–321 (2006). https://doi.org/10.1007/s10519-005-9031-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-005-9031-x

Keywords

Navigation