Skip to main content
Log in

Genetic Factors in Physical Activity and the Equal Environment Assumption – the Swedish Young Male Twins Study

  • Published:
Behavior Genetics Aims and scope Submit manuscript

The aims of this study were to examine the genetic contribution on physical activity (PA) within a nationwide population of young adult male twin pairs from Sweden and to investigate the equal environment assumption (EEA) in relation to PA. Information on PA was collected by questionnaires in 1998 and 2002 and the impact of genetic factors was estimated by structural equation modeling (SEM). The study included 1022 pairs of twins and the best fitting SEM-model gave a heritability of 49% (95% CI, 40–56%) for total PA and all PA dimensions showed genetic contributions between 40% and 65%. Non-shared environmental factors were also important, whereas shared environmental factors did not contribute to PA behaviors. The EEA was investigated with a linear regression model, examining if the twins contact frequency predicted within-pair differences in PA, and further by a simulation study. We found no support for violation of the EEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarnio M., Winter T., Kujala U. M., and Kaprio J. (1997). Familial aggregation of leisure-time physical activity – a three generation study. Int. J. Sports Med. 18:549–556

    Article  PubMed  CAS  Google Scholar 

  • Akaike H. (1987). Factor analysis and aic. Psychometrika 52:317–332

    Article  Google Scholar 

  • Anderssen N. and Wold B. (1992). Parental and peer influences on leisure-time physical activity in young adolescents. Res. Q. Exerc. Sport 63:341–348

    PubMed  CAS  Google Scholar 

  • Baecke J. A., Burema J. and Frijters J. E. (1982). A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am. J. Clin. Nutr. 36:936–942

    PubMed  CAS  Google Scholar 

  • Bauman K. E. and Ennett S. T. (1996). On the importance of peer influence for adolescent drug use: commonly neglected considerations. Addiction 91:185–198

    Article  PubMed  CAS  Google Scholar 

  • Bergeman C. S., Neiderhiser J. M., Pedersen N. L., Plomin R. (2001). Genetic and environmental influences on social support in later life: a longitudinal analysis. Int. J. Aging Hum. Dev. 53:107–135

    Article  PubMed  CAS  Google Scholar 

  • Beunen G. and Thomis M. (1999). Genetic determinants of sports participation and daily physical activity. Int. J. Obes. Relat Metab. Disord. 23(Suppl 3):S55–S63

    Article  PubMed  Google Scholar 

  • Boomsma D. I., van den Bree M. B., Orlebeke J. F. and Molenaar P. C. (1989). Resemblances of parents and twins in sports participation and heart rate. Behav. Genet. 19:123–141

    Article  PubMed  CAS  Google Scholar 

  • Cederlöf R., Friberg L., Jonsson E. and Kaij L. (1961). Studies of similarity diagnosis in twins with the aid of mailed questionnaires. Acta Genet. Med. Gemellol. (Roma). 11:338–362

    Google Scholar 

  • Cronk N. J., Slutske W. S., Madden P. A., Bucholz K. K., Reich W. and Heath A. C. (2002). Emotional and behavioral problems among female twins: an evaluation of the equal environments assumption. J. Am. Acad. Child Adolesc. Psychiatry 41:829–837

    Article  PubMed  Google Scholar 

  • Eaves L., Foley D. and Silberg J. (2003). Has the “Equal Environments” assumption been tested in twin studies?. Twin Res. 6:486–489

    Article  PubMed  Google Scholar 

  • Evans D. M., Gillespie N. A., Martin N. G. (2002). Biometrical genetics. Biol. Psychol. 61:33–51

    Article  PubMed  Google Scholar 

  • Evans D. M. and Martin N. G. (2000). The validity of twin studies. GeneScreen 1:77–79

    Article  Google Scholar 

  • Heath E. M., Morken N. W., Campbell K. A., Tkach D., Boyd E. A. and Strom D. A. (2001). Use of buccal cells collected in mouthwash as a source of DNA for clinical testing. Arch. Pathol. Lab Med. 125:127–133

    PubMed  CAS  Google Scholar 

  • Heller R. F., O’Connell D. L., Roberts D. C., Allen J. R., Knapp J. C., Steele P. L. and Silove D. (1988). Lifestyle factors in monozygotic and dizygotic twins. Genet. Epidemiol. 5:311–321

    Article  PubMed  CAS  Google Scholar 

  • Horwitz A. V., Videon T. M., Schmitz M. F. and Davis D. (2003). Rethinking twins and environments: possible social sources for assumed genetic influences in twin research. J. Health Soc. Behav. 44:111–129

    Article  PubMed  Google Scholar 

  • Kamei Y., Miura S., Suzuki M., Kai Y., Mizukami J., Taniguchi T., Mochida K., Hata T., Matsuda J., Aburatani H., Nishino I., and Ezaki O. (2004). Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J. Biol. Chem. 279:41114–41123

    Article  PubMed  CAS  Google Scholar 

  • Kaprio J., Koskenvuo M. and Sarna S. (1981). Cigarette smoking, use of alcohol, and leisure-time physical activity among same-sexed adult male twins. Prog. Clin. Biol. Res. 69(Pt C):37–46

    PubMed  Google Scholar 

  • Kendler K. S. and Gardner C. O. (1998). Twin studies of adult psychiatric and substance dependence disorders: are they biased by differences in the environmental experiences of monozygotic and dizygotic twins in childhood and adolescence?. Psychol. Med. 28:625–633

    Article  PubMed  CAS  Google Scholar 

  • Kendler K. S. and Prescott C. A. (1998). Cannabis use, abuse, and dependence in a population-based sample of female twins. Am. J. Psychiatry 155:1016–1022

    PubMed  CAS  Google Scholar 

  • Klump K. L., Holly A., Iacono W. G., McGue M., and Willson L. E. (2000). Physical similarity and twin resemblance for eating attitudes and behaviors: a test of the equal environments assumption. Behav. Genet. 30:51–58

    Article  PubMed  CAS  Google Scholar 

  • Lauderdale D. S., Fabsitz R., Meyer J. M., Sholinsky P., Ramakrishnan V. and Goldberg J. (1997). Familial determinants of moderate and intense physical activity: a twin study. Med. Sci. Sports Exerc. 29:1062–1068

    PubMed  CAS  Google Scholar 

  • Livingstone M. B. and Black A. E. (2003). Markers of the validity of reported energy intake. J. Nutr. 133(Suppl 3):895S–920S

    PubMed  CAS  Google Scholar 

  • Loos R. J., Rankinen T., Tremblay A., Perusse L., Chagnon Y., and Bouchard C. (2005). Melanocortin-4 receptor gene and physical activity in the Quebec Family Study. Int. J. Obes. Relat. Metab. Disord. 29:420–428

    Article  CAS  Google Scholar 

  • Madden P. A., Bucholz K. K., Todorov A. A., Grant J. D., and Heath A. C. (2002). The assessment of peer selection and peer environmental influences on behavior using pairs of siblings or twins. Twin. Res. 5:38–43

    Article  PubMed  Google Scholar 

  • Maia J. A., Thomis M. and Beunen G. (2002). Genetic factors in physical activity levels: a twin study. Am. J. Prev. Med. 23:87–91

    Article  PubMed  Google Scholar 

  • Neale M. C., Boker S. M., Xie G., and Maes H. H. (2002). Mx: Statistical Modeling. VCU Department of Psychiatry, Richmond, VA

    Google Scholar 

  • Neale M. C., Cardon L. R. (1992). Methodology for Genetic Studies of Twins and Families. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Pedersen, N., and Lichtenstein P. (2000). Scientific Evaluation of the Swedish Twin Registry. Swedish Council for Planning and Coordination of Research. Report no 2000-10, Stockholm, Sweden

  • Perusse L., Leblanc C., Bouchard C. (1988). Familial resemblance in lifestyle components: results from the Canada Fitness Survey. Can. J. Public Health 79:201–205

    PubMed  CAS  Google Scholar 

  • Perusse L., Tremblay A., Leblanc C. and Bouchard C. (1989). Genetic and environmental influences on level of habitual physical activity and exercise participation. Am. J. Epidemiol. 129:1012–1022

    PubMed  CAS  Google Scholar 

  • Philippaerts R. M., Westerterp K. R. and Lefevre J. (1999). Doubly labelled water validation of three physical activity questionnaires. Int. J. Sports Med. 20:284–289

    Article  PubMed  CAS  Google Scholar 

  • Pols M. A., Peeters P. H., Bueno-De-Mesquita H. B., Ocke M. C., Wentink C. A., Kemper H. C. and Collette H. J. (1995). Validity and repeatability of a modified Baecke questionnaire on physical activity. Int. J. Epidemiol. 24:381–388

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen F. and Johansson-Kark M. (2002). The Swedish Young Male Twins Register: a resource for studying risk factors for cardiovascular disease and insulin resistance. Twin. Res. 5:433–435

    Article  PubMed  Google Scholar 

  • SAS Institute (1999). The Statistical Analysis System, Version 8. SAS Institute Inc. Cary, NC

    Google Scholar 

  • Sham P. (1998). Statistics in Human Genetics. Hodder Headline Group, London

    Google Scholar 

  • Simonen R., Levalahti E., Kaprio J., Videman T. and Battie M. C. (2004). Multivariate genetic analysis of lifetime exercise and environmental factors. Med. Sci. Sports Exerc. 36:1559–1566

    PubMed  Google Scholar 

  • Simonen R. L., Perusse L., Rankinen T., Rice T., Rao D. C., and Bouchard C. (2002). Familial aggregation of physical activity levels in the Quebec Family Study. Med. Sci. Sports Exerc. 34:1137–1142

    Article  PubMed  Google Scholar 

  • Simonen R. L., Rankinen T., Perusse L., Leon A. S., Skinner J. S., Wilmore J. H., Rao D. C. and Bouchard C. (2003a). A dopamine D2 receptor gene polymorphism and physical activity in two family studies. Physiol. Behav. 78:751–757

    Article  CAS  Google Scholar 

  • Simonen R. L., Rankinen T., Perusse L., Rice T., Rao D. C., Chagnon Y. and Bouchard C. (2003b). Genome-wide linkage scan for physical activity levels in the Quebec Family study. Med. Sci. Sports Exerc. 35:1355–1359

    Article  Google Scholar 

  • Stefan N., Vozarova B., Del Parigi A., Ossowski V., Thompson D. B., Hanson R. L., Ravussin E. and Tataranni P. A. (2002). The Gln223Arg polymorphism of the leptin receptor in Pima Indians: influence on energy expenditure, physical activity and lipid metabolism. Int. J. Obes. Relat. Metab. Disord. 26:1629–1632

    Article  PubMed  CAS  Google Scholar 

  • Suwa M., Nakano H., Higaki Y., Nakamura T., Katsuta S. and Kumagai S. (2003). Increased wheel-running activity in the genetically skeletal muscle fast-twitch fiber-dominant rats. J. Appl. Physiol. 94:185–192

    PubMed  Google Scholar 

  • Swallow J. G., Carter P. A., Garland T. Jr. (1998). Artificial selection for increased wheel-running behavior in house mice. Behav. Genet. 28:227–237

    Article  PubMed  CAS  Google Scholar 

  • Wold B. and Anderssen N. (1992). Health promotion aspects of family and peer influences on sports participation. Int. J. Sport Psychol. 23:343–359

    Google Scholar 

  • World Health Organization (2002). The World Health Report 2002: Reducing risks to health, promoting healthy life. World Health Organization, Geneva

    Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Swedish Council for Working Life and Social Research (contract number 2202-0623) to Finn Rasmussen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finn Rasmussen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksson, M., Rasmussen, F. & Tynelius, P. Genetic Factors in Physical Activity and the Equal Environment Assumption – the Swedish Young Male Twins Study. Behav Genet 36, 238–247 (2006). https://doi.org/10.1007/s10519-005-9018-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-005-9018-7

Key words

Navigation