Skip to main content

Advertisement

Log in

Linkage Analyses of IQ in the Collaborative Study on the Genetics of Alcoholism (COGA) Sample

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Intelligence, as measured by standardized psychological tests, has been shown to be highly heritable, though identifying specific genes influencing general intelligence has proven difficult. We conducted genome-wide linkage analyses to identify chromosomal regions containing genes influencing intelligence, as measured by WAIS full-scale IQ (FSIQ), performance IQ (PIQ) and verbal IQ (VIQ). Non-parametric multipoint linkage analyses were conducted with Merlin-regress software, using a sample of 1111 genotyped and phenotyped individuals from 201 families, ascertained as part of the Collaborative Study on the Genetics of Alcoholism (COGA). The strongest evidence of linkage was obtained for FSIQ on chromosome 6 (LOD=3.28, 12 cM) near the marker D6S1006. This region was also implicated with suggestive linkage in a recently published genome screen of IQ in Australian and Dutch twin pairs, and it has been implicated in linkage studies of developmental dyslexia. Our findings provide further support that chromosome 6p contains gene(s) affecting intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  • Abecasis G. R., Cherny S. S., Cookson W. O. C., and Cardon L. R. (2000). Multipoint engine for rapid likelihood inference. Am. J. Hum. Genet. 67 (Suppl): 1816

    Google Scholar 

  • Antonarakis S. E., Blouin J. L., Pulver A. E., Wolyniec P., Lasseter V. K., Nestadt G., Kasch L., Babb R., Kazazian H. H., Dombroski B., Kimberland M., Ott J., Housman D., Karayiorgou M., MacLean C. J. (1995). Schizophrenia susceptibility and chromosome 6p24-22. Nat. Genet. 11:235–236

    Article  PubMed  CAS  Google Scholar 

  • Bailer U., Leisch F., Meszaros K., Lenzinger E., Willinger U., Strobl R., Gebhardt C., Gerhard E., Fuchs K., Sieghart W., Kasper S., Hornik K., Aschauer H. N. (2000). Genome scan for susceptibility loci for schizophrenia. Neuropsychobiology 42:175–182

    Article  PubMed  CAS  Google Scholar 

  • Boehnke M. (1991). Allele frequency estimation from pedigree data. Am. J. Hum. Genet. 48:22–25

    PubMed  CAS  Google Scholar 

  • Bouchard T. J., and McGue M. (1981). Familial studies of intelligence: a review. Science 212:1055–1059

    Article  PubMed  Google Scholar 

  • Bucholz K. K., Cadoret R., Cloninger C. R., Dinwiddie S. H., Hesselbrock V. M., Nurnberger J. J. I., Reich T., Schmidt I., Schuckit M. A. (1994). A new, semi-structured psychiatric interview for use in genetic linkage studies: a report on the reliability of the SSAGA. J. Stud. Alcohol 55:149–158

    PubMed  CAS  Google Scholar 

  • Buyske, S., Bates, M. E., Gharani, N., Matise, T. C., Tischfield, J. A., and Manowitz P. (in press). Cognitive traits link to human chromosomal regions. Behav. Genet.

  • Cardon L. R., Smith S. D., Fulker D. W., Kimberling W. J., Pennington B. F., and DeFries J. S. (1994). Quantitative trait locus for reading disability on chromosome 6. Science 266:276–279

    Article  PubMed  CAS  Google Scholar 

  • Cardon L. R., Smith S. D., Fulker D. W., Kimberling W. J., Pennington B. F., and DeFries J. S. (1995). Quantitative trait locus for reading disability: correction. Science 268:1553

    Article  PubMed  CAS  Google Scholar 

  • Chorney M. J., Chorney K., Seese N., Owen M. J., Daniels J., McGuffin P., Thompson L. A., Detterman D. K., Benbow C., Lubinski D., Eley T. and Plomin R. (1998). A quantitative trait locus associated with cognitive ability in children. Psychol. Sci. 9:159–166

    Article  Google Scholar 

  • Cope N., Harold D., Hill G., Moskvina V., Stevenson J., Holmans P., Owen M. J., O’Donovan M. C., and Williams J. (2005). Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. Am. J. Hum. Genet. 76:581–591

    Article  PubMed  CAS  Google Scholar 

  • Comings D.E., Wu S., Rostamkhani M., McGue M., Lacono W.G., Cheng L.S. and MacMurray J.P. (2003). Role of the cholinergic muscarinic 2 receptor (CHRM2) gene in cognition. Mol. Psychiatry 8:10–11

    Article  PubMed  CAS  Google Scholar 

  • Devlin B., Daniels M., and Roeder K., (1997). The heritability of IQ. Nature 388:468–471

    Article  PubMed  CAS  Google Scholar 

  • Egan M. F., Goldberg T. E., Kolachana B. S., Callicott J. H., Mazzanti C. M., Straub R. E., Goldman D., Weinberger D. R. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl. Acad. Sci. USA 98:6917–6922

    Article  PubMed  CAS  Google Scholar 

  • Fisher S. E., Marlow A. J., Lamb J., Maestrini E., Williams D. F., Richardson A. J., Weeks D. E., Stein J. F., and Monaco A. P. (1999). A quantitative-trait locus on chromosome 6p influences different aspects of developmental dyslexia. Am. J. Hum. Genet. 64:146–156

    Article  PubMed  CAS  Google Scholar 

  • Flint J. (1999). The genetic basis of cognition. Brain 122:2015–2031

    Article  PubMed  Google Scholar 

  • Gayan J., Smith S. D., Cherny S. S., Cardon L. R., Fulker D. W., Brower A. M., Olson R. K., Pennington B. F., and DeFries J. S. (1999). Quantitative trait locus for specific language and reading deficits on chromosome 6. Am. J. Hum. Genet. 64:157–164

    Article  PubMed  CAS  Google Scholar 

  • Green, P.H. (1990). Documentation for CRIMAP, version 2.4

  • Grigorenko E. L., Wood F. B., Meyer M. S., Hart L. A., Speed W. C., Shuster A., and Pauls D. L. (1997). Susceptibility loci for distinct components of developmental dyslexia on chromosome 6p and 15. Am. J. Hum. Genet. 60:27–39

    PubMed  CAS  Google Scholar 

  • Grigorenko E. L., Wood F. B., Meyer M. S., Hart L. A. and Pauls D. L. (2000). Chromosome 6p influences on different dyslexia-related cognitive process: further confirmation. Am. J. Hum. Genet. 66:715–723

    Article  PubMed  CAS  Google Scholar 

  • Grigorenko E. L., Wood F. B., Golovyan L., Meyer M., Romano C., Hart L. A. And Pauls D. L. (2003). Continuing the search for dyslexia genes on 6p. Am. J. Med. Genet. Part B: Neuropsychiatric Genet. 118 B:89–98

    Article  Google Scholar 

  • Hesselbrock M., Easton C., Bucholz K. K., Schuckit M., Hesselbrock V. (1999). A validity study of the SSAGA – A comparison with the SCAN. Addiction 94:1361-1370

    Article  PubMed  CAS  Google Scholar 

  • Hill L., Chorney M. J., Lubinski D., Thompson L. A., and Plomin R. (2002) A quantitative trait locus not associated with cognitive ability in children: a failure to replicate. Psychol. Sci. 13:561

    Article  PubMed  Google Scholar 

  • Hovatta I., Lichtermann D., Juvonen H., Suvisaari J., Terwilliger J. D., Arajarvi R., Kokko-Sahin M.-L., Ekelund J., Lonnqvist J., Peltonen L. (1998). Linkage analysis of putative schizophrenia gene candidate regions on chromosomes 3p, 5q, 6p, 8p, 20p, and 22q in a population-based sampled Finnish family set. Mol. Psychiatry 3:452–457

    Article  PubMed  CAS  Google Scholar 

  • Lander E., Kruglyak L. (1995). Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Lindholm E., Ekholm B., Balciuniene J., Johansson G., Castensson A., Koisti M., Nylander P. O., Pettersson U., Adolfsson R., Jazin E. (1999). Linkage analysis of a large Swedish kindred provides further support for a susceptibility locus for schizophrenia on chromosome 6p23. Am. J. Med. Genet. 88:369–377

    Article  PubMed  CAS  Google Scholar 

  • Luciano, M., Wright, M. J., Duffy, D. L., Wainwright, M. A., Evans, D. M., Geffen, G. M., Montgomery, G. W., and Martin, N. G. (in press). Genome-wide scan of IQ finds significant linkage to a quantitative trait locus on 2q. Behav. Genet.

  • Malhotra A. K., Kestler L. J., Mazzanti C., Bates J. A., Goldberg T., and Goldman D. (2002) A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am. J. Psychiatry 159:652–654

    Article  PubMed  Google Scholar 

  • Maziade M., Roy M. A., Rouillard E., Bissonnette L., Fournier J. P., Roy A., Garneau Y., Montgrain N., Potvin A., Cliché, D., Dion C., Wallot H., Fournier A., Nicole L., Lavallee J. C., Merette C. (2001). A search for specific and common susceptibility loci for schizophrenia and bipolar disorder: a linkage study in 13 target chromosomes. Mol. Psychiatry 6:684–693

    Article  PubMed  CAS  Google Scholar 

  • McGue M., Bouchard Jr. T. J., Iacono W. G., Lykken D..T. (1993). Behavioral genetics of cognitive ability: a life-span perspective. In: Plomin R., McClearn G. E. (eds). Nature, Nurture, and Psychology. American Psychological Association, Washington DC, pp. 59–76

    Chapter  Google Scholar 

  • McIntosh A. M., Harrison L. K., Forrester K., Lawrie S. M. and Johnstone E. C. (2005). Neuropsychological impairments in people with schizophrenia or bipolar disorder and their unaffected relatives. Br. J. Psychiatry 186:378–85

    Article  PubMed  Google Scholar 

  • Paunio T., Tuulio-Henriksson A., Hiekkalinna T., Perola M., Varilo T., Partonen T., Cannon T.D., Lonnqvist J. and Peltonen L. (2004). Search for cognitive trait components of schizophrenia reveals a locus for verbal learning and memory on 4q and for visual working memory on 2q. Human Mol. Genet. 15:1693–1702

    Article  Google Scholar 

  • Payton A., Holland F., Diggle P., Rabbitt P., Horan M., Davidson Y., Gibbons L., Worthington J., Ollier W. E. R., and Pendleton N. (2003) Cathepsin D exon 2 polymorphism associated with general intelligence in a healthy older population. Mol. Psychiatry 8: 14-18

    Article  PubMed  CAS  Google Scholar 

  • Petrill S. A. (2002). The case for general intelligence: a behavioral genetic perspective. In: Sternberg R. J. and Grigorenko E. L. (eds). The General Factor of Intelligence: How General is it?. Lawrence Erlbaum Associates, Mahwah NJ, pp. 281–298

    Google Scholar 

  • Plomin R., DeFries J. C., McClearn G. E. and McGuffin P. (2001a) Behavioral genetics. 4th edition. Worth, London

    Google Scholar 

  • Plomin R., Hill L., Craig I. W., McGuffin P., Purcell Sh., Sham P., Lubinski D., Thompson L. A., Fisher P. J., Turic D., and Owen M. J. (2001b). A genome-wide scan of 1842 DNA markers for allelic associations with general cognitive ability: a five-stage design using DNA pooling and extreme selected groups. Behav. Genet. 31:497–509

    Article  CAS  Google Scholar 

  • Plomin R. (2003). Genetics, genes, genomics, and g. Mol. Psychiatry 8:1–5

    Article  PubMed  CAS  Google Scholar 

  • Posthuma, D., Luciano, M., De Geus, E. J. C., Wright, M. J., Slagboom, P. E., Montgomery, G. W., Boomsma, D. I., and Martin, N. G. (2005). A genome wide scan for intelligence identifies quantitative trait loci on 2q and 6p. Am. J. Hum. Genet77:318–326

    Google Scholar 

  • Reich T. (1996). A genomic survey of alcohol dependence and related phenotypes: results from the Collaborative Study on the Genetics of Alcoholism (COGA). Alcohol. Clin. Exp. Res. 20:133A–137A

    Article  PubMed  CAS  Google Scholar 

  • Reich, T., Edenberg, H. J., Goate, A., Williams, J. T., Rice, J. P., Van Eerdewegh, P., Foroud, T., Hesselbrock, V., Schuckit, M. A., Bucholz, K., Porjesz, B., Li, T. K., Conneally, P. M., Nurnberger, J. I. Jr., Tischfield, J.A., Crowe, R. R., Cloninger, C. R., Wu, W., Shears, S., Carr, K., Crose, C., Willig, C., and Begleiter, H. (1998). Genome-wide search for genes affecting the risk for alcohol dependence. Am. J. Med. Genet81:207–215

    Google Scholar 

  • Schwab S. G., Hallmayer J., Albus M., Lerer B., Eckstein G. N., Borrmann M., Segman R. H., Hanses C., Freymann J., Yakir A., Trixler M., Falkai P., Rietschel M., Maier W., Wildenauer D. B. (2000). A genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families with affected siblings: support for loci on chromosome 10p and 6. Mol. Psychiatry 5(6):638–649

    Article  PubMed  CAS  Google Scholar 

  • Sham P. C., Purcell S., Cherny S. S. and Abecasis G. R. (2002). Powerful regression-based quantitative-trait linkage analysis of general pedigrees. Am. J. Hum. Genet. 71:238–253

    Article  PubMed  CAS  Google Scholar 

  • Straub R. E., Jiang Y., MacLean C. J., Ma Y., Webb B. T., Myakishev M. V., Harris-Kerr C., Wormley B., Sadek H., Kadambi B., Cesare A. J., Gibberman A., Wang X., O’Neill F. A., Walsh D., and Kendler K. S. (2002). Genetic variation in the 6p22.3 Gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am. J. Hum. Genet. 71:337–348

    Article  PubMed  CAS  Google Scholar 

  • Suarez B. K., Hampe C. L. and Van Eerdewegh P. (1994). Problems of replicating linkage claims in psychiatry. In: Gershon E. S. and Cloninger C. R. (eds). Genetic Approaches to Mental Disorders. American Psychiatric Press, Washington, DC

    Google Scholar 

  • Wainwright, M. A., Wright, M. J., Luciano, M., Montgomery, G. W., Geffen, G. M., and Martin, N. G. (in press). A linkage study of academic skills defined by the Queensland Core Skills Test. Behav. Genet.

  • Wechsler D. (1981). Wechsler Adult Intelligence Scale – Revised. The Psychological Corporation, New York

    Google Scholar 

  • Wechsler D. (1997). WAIS-III Wechsler Adult Intelligence Scale. Psychological Corporation, San Antonio

    Google Scholar 

  • Wiltshire S., Cardon L. R. and McCarthy M. I. (2002). Evaluating the results of genomewide linkage scans of complex traits by locus counting. Am. J. Human Genet. 71:1175–1182

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Collaborative Study on the Genetics of Alcoholism (COGA) (Principal Investigator: H. Begleiter; Co-Principal Investigators: L. Bierut, H. Edenberg, V. Hesselbrock, B. Porjesz) includes nine different centers where data collection, analysis, and storage take place. The nine sites and Principal Investigators and Co-Investigators are: University of Connecticut (V. Hesselbrock); Indiana University (H. Edenberg, J. Nurnberger Jr., P.M. Conneally, T. Foroud); University of Iowa (S. Kuperman, R. Crowe); SUNY HSCB (B. Porjesz, H. Begleiter); Washington University in St. Louis (L. Bierut, A. Goate, J. Rice); University of California at San Diego (M. Schuckit); Howard University (R. Taylor); Rutgers University (J. Tischfield); Southwest Foundation (L. Almasy). Zhaoxia Ren serves as the NIAAA Staff Collaborator. This national collaborative study is supported by the NIH Grant U10AA08401 from the National Institute on Alcohol Abuse and Alcoholism (NIAAA) and the National Institute on Drug Abuse (NIDA). Partial support was also provided by NCRR Grant M01-RR06192 to the University of Connecticut School of Medicine GCRC.

In memory of Theodore Reich, M.D., Co-Principal Investigator of COGA since its inception and one of the founders of modern psychiatric genetics, we acknowledge his immeasurable and fundamental scientific contributions to COGA and the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle M. Dick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dick, D.M., Aliev, F., Bierut, L. et al. Linkage Analyses of IQ in the Collaborative Study on the Genetics of Alcoholism (COGA) Sample. Behav Genet 36, 77–86 (2006). https://doi.org/10.1007/s10519-005-9009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-005-9009-8

Keywords

Navigation