Skip to main content
Log in

Acquiring reference parameters of masonry for the structural performance analysis of historical buildings

  • Original Research Paper
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

The structural performance of historical masonry elements can be understood provided the following factors are known: geometry; the characteristics of its masonry texture and morphology, state of damage and decay, physical, chemical and mechanical characteristics of the components (units, infill, mortar); the characteristics of built masonry as a composite material. In order to quantify the mechanical properties of the masonry both laboratory and in-situ tests are required. However, in the case of cultural heritage assets, the setting up of an effective knowledge procedure is strictly related to the minimization of invasiveness on the structure, with the aim of its conservation, rather than the cost–benefit optimization: thus it is essential to have available reference parameters to be adopted for different masonry types. Within this context, this State-of-the-Art paper on this topic is organized with integrated outcomes from the test campaigns carried out through the PERPETUATE project, that are also briefly presented. Reference parameters for effective seismic assessment are provided both for brick and stone masonry together with their upper and lower bound values for both mechanical parameters and damage limits for which proper limit states (LS) may be associated. Apart from the LS for structural elements (SE), the relevant LS’s for artistic assets attached to the SE are also presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A2:

Damage level corresponding to drift at which the first structural crack on the plaster occurred

A3:

Damage level corresponding to drift at which plaster was largely detached from the wall but still repairable

A4:

Damage level corresponding to drifts at which plaster collapsed

\(A_{w }\) :

Gross wall cross-section

AA:

Artistic asset

\(b \) :

Shear distribution factor

D:

Destructive test

\(D_{cr}\) :

Displacement at which first crack is attained

\(D_{cr,x}\) :

Displacement at which first flexural crack is attained

\(D_{e}\) :

Elastic displacement of an idealized bilinear curve

\({D}_{{ FC}}\) :

Drift capacity corresponding FC state

\(D_{max}\) :

Maximum attained displacement

\({D}_{{NC}}\) :

Drift capacity corresponding NC state

\({D}_{{SD}}\) :

Drift capacity corresponding SD state

\(D_{u }\) :

Ultimate displacement of an idealized bilinear curve

\(D_{Vmax}\) :

Displacement at which maximum resistance is reached

\(E_{b}\) :

Modulus of elasticity of the unit

\(E_{M}\) :

Modulus of elasticity of the masonry

\(E_{m}\) :

Modulus of elasticity of the mortar

FC:

First Cracking

\(f_{bc}\) :

Compressive strength of the unit

\(f_{bc,n}\) :

Normalised compressive strength of the unit

\(f_{bt}\) :

Tensile strength of the unit

\(f_{bta}\) :

Axial tensile strength of the unit

\(f_{bts}\) :

Splitting tensile strength of the unit

\(f_{bx}\) :

Flexural tensile strength of the unit

\(f_{jx}\) :

Bond strength of mortar–unit junction determined with Bond Wrench test

\(f_{Mc}\) :

Compressive strength of the masonry

\(f_{Mc,k}\) :

Characteristic compressive strength of the masonry

\(f_{Mt}\) :

Diagonal tensile strength of the masonry

\(f_{mc}\) :

Compressive strength of the mortar

\(f_{mx }\) :

Flexural strength of the mortar

\(f_{St}\) :

Equivalent tensile strength aimed to characterize the masonry behaviour at spandrel scale and not at material scale

\(f_{v0}\) :

Initial shear strength of the masonry

\(f_{vk0}\) :

Characteristic initial shear strength of the masonry

\(G_{M}\) :

Shear modulus of the masonry

\(H_{p}\) :

Tensile resistance of the horizontal tension element coupled to spandrel

\(h_{0}\) :

Span height of wall/pier

\(h_{j}\) :

Height of the mortar joint

\(h_{S}\) :

Spandrel length

\(h_{s}\) :

Free height between two storeys

\(h_{w}\) :

Height of wall/pier

\(K_{eff}\) :

Effective stiffness of the wall/pier

\(K_{w}\) :

Resulting effective stiffness for composite wall sections

LS:

Limit States

\(l_{0S}\) :

Span height of spandrel

\(l_{S}\) :

Spandrel height

\(l_{w}\) :

Length of wall/pier

\(l_{wc}\) :

Length of the compressed part of the wall/pier

MD:

Minor (partly) destructive tests

NC:

Near collapse

ND:

Non-destructive tests

\(P_{d}\) :

Maximum force at diagonal test

SD:

Significant damage

SE:

Structural elements

\(t^{e}\) :

Thickness of exterior leaf

\(t^{i}\) :

Thickness of the infill

\(t_{S}\) :

Spandrels thickness

\(t_{w}\) :

Thickness of the wall/pier

\(V_{cr }\) :

Shear resistance of the wall corresponding to first cracking

\(V_{max}\) :

Maximum in-plane shear resistance of the wall

\(V_{Rd}\) :

Design value of shear resistance

\(V_{Rd,r}\) :

Design value of shear resistance considering rocking

\(V_{Rd,s}\) :

Design value of shear resistance considering sliding

\(V_{Rd,t}\) :

Design value of shear resistance considering diagonal cracking

\(V_{u }\) :

Idealized shear resistance

\(\varepsilon \) :

Strain

\(\gamma _{S}\) :

Coefficient considering the actual distribution of stress at the end section of spandrel

\(\Delta _{y}\) :

Unit height

\(\mu \) :

Coefficient of friction

\(\nu _{M}\) :

Poisson’s ratio for masonry

\(\rho \) :

Density

\(\sigma \) :

Stress

\(\sigma _{0}\) :

Average compression stress due to vertical loading

\(\sigma _{d}\) :

Average vertical stress over the compressed part of the wall/pier

\(\sigma _{0S}\) :

Normal compressive stress on the spandrel

\(\tau _{{M}0}\) :

Equivalent diagonal shear strength

\(\tau _{Hmax}\) :

Average shear stress over the whole cross section of the wall at the attained maximum resistance of the wall

\(\phi \) :

Interlocking parameter considering the texture of masonry

\(\psi \) :

Corrective factor in dependence from boundary conditions

References

  • Abrams DP (2001) Performance-based engineering concepts for unreinforced masonry building structures. Earthquake engineering and structural dynamics. Prog Struct Eng Mater 3:48–56

    Article  Google Scholar 

  • Abrams D, Smith T, Lynch J, Franklin S (2007) Effectiveness of rehabilitation on seismic behavior of masonry piers. J Struct Eng ASCE doi:10.1061/ASCE0733-94452007133:132

  • Anthoine A, Magonette G, Magenes G (1995) Shear compression testing and analysis of brick masonry walls. In: Proceedings of the 10th European conference on earthquake engineering, Vienna, pp 1657–1662

  • ASTM E 519-02 (2002) Standard test method for diagonal tension (shear) in masonry assemblages. Annual Book of ASTM Standard, American Society for Testing and Materials

  • Augenti N, Parisi F, Acconcia E (2012) MADA: online experimental database for mechanical modelling of existing masonry assemblages. In: Proceedings of the 15th world conference on earthquake engineering, Lisbon, Portugal, 24–28 September. Paper 2897:1–10

  • Betti M, Galano L, Vignoli A (2008) Seismic response of masonry plane walls: a numerical study on spandrel strength. In: Proceedings of the 2008 seismic engineering conference commemorating the 1908 Messina and Reggio Calabria earthquake, July 8–11 2008, Reggio Calabria, Italy

  • Beyer K (2012) Peak and residual strengths of brick masonry spandrels. Eng Struct 41:533–547. doi:10.1016/j.engstruct.2012.03.015

    Article  Google Scholar 

  • Beyer K, Dazio A (2012) Quasi-static cyclic tests on masonry spandrels. Earthq Spectra 28(3):907–929. doi:10.1193/1.4000063

    Article  Google Scholar 

  • Beyer K, Mangalathu S (2013) Review of strength models for masonry spandrels. Bull Earthq Eng 11(2):521–542. doi:10.1007/s10518-012-9394-3

    Article  Google Scholar 

  • Binda L, Penazzi D, Saisi A (2003) Historic masonry buildings: necessity of a classification of structures and masonries for the adequate choice of analytical models. In: VI International symposium computer methods in structural masonry– -STRUMAS, Rome, Italy, 22–24 September, pp 168–173

  • Binda L, Pina-Henriques J, Anzani A, Fontana A, Lourenco PB (2006) A contribution for the understanding of load-transfer mechanisms in multi-leaf masonry walls: testing and modelling. Eng Struct 28:1132–1148. doi:10.1016/j.engstruct.2005.12.004

    Article  Google Scholar 

  • Binda L, Cardani G (2007) Proposta di una metodologia per la valutazione della qualità muraria. In: Reluis, progetto esecutivo 2005–2008, Linee guida per la compilazione della scheda di valutazione della qualita’ muraria, Decembre (in Italian)

  • Borri A (2006) Proposta di una metodologia per la valutazione della qualità muraria, In: Reluis, progetto esecutivo 2006–2008, Progetto di ricerca n.1, Valutazione e riduzione della vulnerabilità sismica di edifici in muratura, rendicontazione scientifica \(1^{\circ }\)anno, Novembre (in Italian)

  • Borri A, De Maria A (2009) L’indice di Qualità Muraria (IQM): Evoluzione ed applicazione nell’ambito delle Norme Tecniche per le Costruzioni del 2008, Atti del XIII Convegno Anidis, Bologna

  • Borri A, Corradi M, Speranzini E (2011) Shear behaviour of unreinforced and reinforced masonry panels subjected to in-situ diagonal compression tests. Constr Build Mater 25:2203–4414

    Google Scholar 

  • Bosiljkov V (1996) On modelling mechanical properties of the masonry, M.Sc. thesis, University of Ljubljana, Slovenia, October (in Slovenian)

  • Bosiljkov V, Page AW, Bokan-Bosiljkov V, Žarnić R (2003) Performance based studies of in-plane loaded unreinforced masonry walls. Mason. Int. 16(2):39–50

    Google Scholar 

  • Bosiljkov V, Totoev YZ, Nichols JM (2005) Shear modulus and stiffness of brickwork masonry: an experimental perspective. Struct Eng Mech 20(1):21–43. doi:10.12989/sem.2005.20.1.021

    Article  Google Scholar 

  • Bosiljkov V, Bokan-Bosiljkov V, Strah B, Velkavrh J, Cotič P (2010a) Review of innovative techniques for the knowledge of cultural assets (geometry, technologies, decay), PERPETUATE (EC-FP7 project), Deliverable D6.www.perpetuate.eu

  • Bosiljkov V, Maierhofer Ch, Koepp Ch, Wöstman J (2010b) Assessment of structure through non-destructive tests (NDT) and minor destructive tests (MDT) investigation: case study of the Church at Carthusian Monastery at Žiče (SLOVENIA). Int J Archit Herit 4(1):1–15

    Article  Google Scholar 

  • Bosiljkov V, Page AW, Bokan-Bosiljkov V, Žarnić R (2010c) Evaluation of the seismic performance of brick masonry walls. Struct Control Health Monit 17(1):100–118. doi:10.1002/stc.299

    Article  Google Scholar 

  • Bosiljkov V, Kržan M (2012) Results of laboratory and in-situ tests on masonry properties and tables with mechanical parameters to be adopted in numerical modelling, PERPETUATE (EC-FP7 project), Deliverable D15. www.perpetuate.eu

  • Brignola A, Frumento S, Lagomarsino S, Podestà S (2008) Identification of shear parameters of masonry panels through the in-situ diagonal compression test. Int J Archit Herit 3(1):52–73. doi:10.1080/15583050802138634

    Article  Google Scholar 

  • Calderini C, Cattari S, Lagomarsino S (2009) In-plane strength of unreinforced masonry piers. Earthq Eng Struct Dyn 38(2):243–267. doi:10.1002/eqe.860

    Article  Google Scholar 

  • Calderini C, Cattari S, Lagomarsino S (2010a) The use of the diagonal compression test to identify the shear mechanical parameters of masonry. Constr Build Mat 24:677–685

  • Calderini C, Cattari S, Lagomarsino S, Rossi M (2010b) Review of existing models for global response and local mechanisms. PERPETUATE (EC-FP7 project), Deliverable D6, www.perpetuate.eu

  • Calderini C, Abbati SD, Cotič P, Kržan M, Bosiljkov V (2014) In-plane shear tests on masonry panels with plaster: correlation of structural damage and damage on artistic assets. Bull Earthq Eng (in this special issue). doi:10.1007/s10518-014-9632-y

  • Calderoni B, Cordasco EA, Lenza P, Pacella G (2011) A simplified theoretical model for the evaluation of structural behaviour of masonry spandrels. Int J Struct Integr 5(2/3):192–214. doi:10.1504/IJMSI.2011.041934

    Article  Google Scholar 

  • Candela M, Cattari S, Lagomarsino S, Rossi M, Fonti R, Pagliuca E (2012) In-situ test for the shear strength evaluation of masonry: the case of a building hit by L’Aquila earthquake (Italy). In: Proceedings of the 15th world conference on earthquake engineering (WCEE), 24–28 September 2012, Lisbon, Portugal, p 5460

  • Carbonara G (1996) Trattato di restauro arehitettonieo, Utet, Torino (in Italian)

  • Cattari S (2007) Modelling of existing masonry and mixed masonry–reinforced concrete buildings by the equivalent frame approach: formulation of synthetic models. Ph.D. Thesis, University of Genoa, Italy (in Italian)

  • Cattari S, Lagomarsino S (2008) A strength criterion for the flexural behaviour of spandrel in un-reinforced masonry walls. In: Proceedings of the 14th world conference on earthquake engineering, October 12–17, 2008, Beijing, China

  • Cattari S, Lagomarsino S, Bosiljkov V, D’Ayala D (2014) Sensitivity analysis for setting up the investigation protocol and defining proper confidence factors for masonry buildings. Bull of Earthq Eng (in this special issue). doi:10.1007/s10518-014-9648-3

  • Chidiac S (2000) Guidelines for the seismic assessment of stone-masonry structures. Public Works & Government Services Canada, July

  • Corradi M, Borri A, Vignoli A (2002) Strengthening techniques tested on masonry structures struck by the Umbria–Marche earthquake of 1997–1998. Constr Build Mater 16:229–239. doi:10.1016/S0950-0618(02)00014-4

    Article  Google Scholar 

  • Cotič P, Jagličić Z, Bosiljkov V (2013) Validation of non-destructive characterization of the structure and seismic damage propagation of plaster and texture in multi-leaf stone masonry walls of cultural-artistic value. J Cult Herit 12. doi:10.1016/j.culher.2013.11.004

  • Cotič P, Jagličić Z, Niederleithinger E, Stoppel M, Bosiljkov V (2014) Image fusion for improved detection of near-surface defects in NDT-CE using unsupervised clustering methods. J Nondestruct Eval 33(3):384–397. doi:10.1007/s10921-014-0232-1

    Article  Google Scholar 

  • CSA Standard S304.1-94 (1994) Masonry design for buildings (Limit States Design). Canadian Standards Association, Rexdale, Ont

  • Davies N, Jokiniemi E (2008) Dictionary of architecture and building construction. Elsevier. ISBN: 978-0-7506-8502-3

  • DIN 1053-100 (2004) Masonry: design on the basis of semi-probabilistic safety concept

  • Elmenshawi A, Duchesne D, Paquette J, Mufti A, Jaeger L, Shrive N (2011) Elastic moduli of stone masonry based on static and dynamic tests. In: 11th NAMC, Minneapolis, USA, June 5–6.

  • Eurocode 6 (2006) Design of Masonry Structures—part 1–1: common rules for reinforced and unreinforced masonry structures. Brussels, Belgium

  • Eurocode 8 (2005a) Design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. Brussels, Belgium

  • Eurocode 8 (2005b) Design of structures for earthquake resistance—part 3: assessment and retrofitting of buildings. Brussels, Belgium

  • FEMA 306 (1998) Evaluation of earthquake damaged concrete and masonry wall buildings. Basic procedures manual, Applied Technology Council for the Federal Emergency Management Agency, USA

  • Gattesco N, Clemente I, Macorini L, Noe S (2008) Experimental investigation on the behaviour of spandrels in ancient masonry buildings. The 14th world conference on earthquake engineering October. Beijing, China, pp 12–17

  • Giuffrè A (1990) Letture sulla meccanica delle murature storiche. Kappa, Rome (in Italian)

    Google Scholar 

  • Gouveia JP, Lourenco PB (2007) Masonry shear walls subjected to cyclic loading: influence of confinement and horizontal reinforcement. In: 10th North American masonry conference, St. Louis, Missouri, USA, June 3–6

  • Graziotti F, Magenes G, Penna A (2012) Experimental cyclic behaviour of stone masonry spandrels. In: Proceedings of the 15th world conference on earthquake engineering, Lisbon, Portugal

  • Houben H, Guillaud H (1994) Earth construction: a comprehensive guide: earth construction series. Intermediate Technology Publications, London

    Google Scholar 

  • Jarc Simonič M, Gostič S, Bosiljkov V, Žarnić R (2014) In-situ and laboratory tests of old brick masonry strengthened with FRP in innovative configurations and design considerations. Bull Earthq Eng (in this special issue). doi:10.1007/s10518-014-9644-7

  • Jäger W, Marzahn G (2010) Mauerwerk Bemessung nach DIN 1053-100, Enst&Sohn (in German)

  • JUS (1985) Pravilnik o tehničnih normativih za sanacijo, ojačitev in rekonstrukcijo objektov visoke gradnje, ki jih je poškodoval potres ter rekonstrukcijo in revitalizacijo objektov visoke gradnje, Ur.l. SFRJ, 52/1985 (in Slovenian)

  • Knox CL (2012) Assessment of perforated unreinforced masonry walls responding in-plane. PhD thesis, The University of Auckland, Department of Civil and Environmental Engineering, New Zealand

  • Kržan M, Žarnić R, Bosiljkov V (2011) Design of lateral resistance of URM blockwork through theoretical models and code provisions. In: Ingham JM (ed) Proceedings of the 9th Australasian masonry conference, Queenstown, New Zeland, 15–18 February 2011, pp 451–462

  • Kržan M, Gostič S, Bosiljkov V (2014) Application of different in-situ testing techniques and vulnerability assessment of Kolizej palace in Ljubljana. Bull Earthq Eng (in this special issue). doi:10.1007/s10518-014-9639-4

  • Lagomarsino S, Magenes G (2009) Evaluation and reduction of the vulnerability of masonry buildings. In: Manfredi G, Dolce M (eds) The state of earthquake engineering research in Italy: the ReLUIS-DPC 2005–2008 project. Doppiavoce, Napoli, pp 1–50

    Google Scholar 

  • Lagomarsino S, Modaressi H, Pitilakis K, Bosjlikov V, Calderini C, D’Ayala D, Benouar D, Cattari S (2010) PERPETUATE project: the proposal of a performance-based approach to earthquake protection of cultural heritage. Adv Mater Res 133–134:1119–1124

    Article  Google Scholar 

  • Lagomarsino S, Abbas N, Calderini C, Cattari S, Rossi M, Ginanni Corradini R, Marghella G, Mattolin F, Piovanello V (2011) Classification of cultural heritage assets and seismic damage variables for the identification of performance levels. In: Proceedings of the structural repairs and maintenance of heritage architecture conference. WIT Press, pp 697–708, ISSN 1743–3509

  • Lagomarsino S, Penna A, Galasco A, Cattari S (2013) TREMURI program: an equivalent frame model for the nonlinear seismic analysis of masonry buildings. Eng Struct 56:1787–1799. doi:10.1016/j.engstruct.2013.08.002

    Article  Google Scholar 

  • Lagomarsino S, Cattari S (2014) PERPETUATE guidelines for seismic performance-based assessment of cultural heritage masonry structures. Bull Earthquake Eng. doi:10.1007/s10518-014-9674-1

  • Lourenco PB (2012) Non-linear numerical modelling of masonry, part I: masonry Behavior and Modeling (invited lecture). In: 15th IBMAC, Florianopolis, Brazil, June 3–6

  • Lourenco PB, van Hees R, Fernandes F, Lubelli B (2014) Characterization and Damage of Brick Masonry. In: Costa A et al (eds) Structural rehabilitation of old buildings, building pathology and rehabilitation, vol 2. Springer, Berlin

    Google Scholar 

  • Magalhães A, Veiga R (2009) Physical and mechanical characterisation of historic mortars. Application to the evaluation of the state of conservation. Mater Constr 59(295):61–77. doi:10.3989/mc.41907

    Article  Google Scholar 

  • Magenes G, Calvi GM (1997) In-plane seismic response of brick masonry walls. Earthq Eng Struct Dyn 26:1091–1112

    Article  Google Scholar 

  • Magenes G, Galasco A, Penna A, Da Parè A (2010) In-plane cyclic shear tests of undressed double leaf stone masonry panels. In: Proceedings of the 14th European conference on earthquake engineering (ECEE) conference, p 1435, Ohrid, FYROM 30/08–03/09 2010

  • Manfredi G, Mazzolani S, Masi A (1992) Review of existing in experimental testing of masonry structures subjected to horizontal loads. In: Tenth world conference earthquake engineering. Balkema, Rotterdam

  • Mann W, Müller H (1980) Failure of shear-stressed masonry- an enlarged theory, tests and application to shear walls. Proc British Ceram Soc 27:223–235

  • Martins L, Vasconcelos G, Lourenço P (2014) In-situ testing of stone masonry: a review of the state of the art. In: Lourenço PB, Haseltine B, Vasconcelos G (eds) In: 9th International masonry conference, Guimarães, 7–9 July 2014. International Masonry Society, Guimarães, pp 1–12

  • Mayes RL, Clough RW (1975). A literature survey-compressive, tensile, bond and shear strength of masonry, Rept.No. EERC 75–13, University of California, Berkeley, June

  • MIT 2009 (2009) Ministry of Infrastructures and Transportation, Circ. C.S.Ll.Pp. No. 617 of 2/2/2009. Istruzioni per l’applicazione delle nuove norme tecniche per le costruzioni di cui al Decreto Ministeriale 14 Gennaio 2008. G.U. S.O. n.27 of 26/2/2009, No. 47 (in Italian)

  • Moropoulou A, Kyriakos L, Agoritsa K, Konstantinos R, Asterios B, Prodromos M (2006) Susceptibility of building stones to environmental loads: evaluation. In: Performance, repair strategies, fracture and failure of natural building stones, Part II, pp 291–297. doi:10.1007/978-1-4020-5077-0_18

  • Müller U, Gardei A, Massah S, Meng B (2008) Hydraulische Bindemittel (Hydraulic binders). In: Vereinigung der Landesdenkmalpfleger in der Bundesrepublik Deutschland (ed), Denkmal an Beton! Michael Imhof Verlag, Petersberg, pp 9–21

  • NTC 2008 (2008) Decreto Ministeriale 14/1/2008. Norme tecniche per le costruzioni. Ministry of Infrastructures and Transportations. G.U. S.O. n.30 on 4/2/2008 (in Italian)

  • Parisi F, Augenti N, Balsamo A, Prota A, Manfredi G (2010) Lateral load tests on a masonry system with and without external reinforcement. In: 14th European conference on earthquake engineering, Ohrid, FYROM 30th August–3rd September

  • Petry S, Beyer K (2013) Influence of coupling on the displacement capacities of URM piers—comparison of experimental results with existing recommendations. In: Adam C, Heuer R, Lenhardt W, Schranz C (eds) Proceedings of the Vienna congress on recent advances in earthquake engineering and structural dynamics 2013 (VEESD 2013), 28–30 August 2013, Vienna, Austria, Paper No. 193

  • Peulić Đ(1976) Konstruktivni elementi zgrada. Tehnička knjiga Zagreb, Croatia, April (in Croatian)

  • P.I.E.T. 70 (1971). Obras de Fábrica. Prescripciones del Instituto Eduardo Torroja. Consejo Superior de Investigacioens Científicas. Madrid (in Spanish)

  • Rota M, Penna A, Magenes G (2010) A methodology for deriving analytical fragility curves for masonry buildings based on stochastic nonlinear analyses. Eng Struct 32(5):1312–1323. doi:10.1016/j.engstruct.2010.01.009

    Article  Google Scholar 

  • Schäfer J, Hilsdorf HK (1993) Struktur und Mechanische Eigenschaften von Kalkmörteln. In: Wenzel F (ed) Erhalten historisch bedeutsamer Bauwerke - Baugefüge, Konstrukionen, Werkstoffe. Ernst & Sohn, Berlin, pp 65–76

  • Schubert P (2009) Eigenschaftenwerte von Mauerwerk, Mauersteinen, Mauermörtel und Putzen. In: Jäger W (ed) Mauerwerk-Kalender 2009. Ernst & Sohn, Berlin, pp 3–27. doi:10.1002/9783433600306.ch1

  • SIA 266(2003) Masonry. Swiss Society of Engineers and Architects SIA, Zürich, Switzerland 44

  • SIA 266/2; SN 505266/2(2012) Natursteinmauerwerk. Swiss Society of Engineers and Architects SIA, Zürich, Switzerland (in German)

  • SIA D0237(2010) Beurteilung von Mauerwerksgebäuden bezüglich Erdbeben. Swiss Society of Engineers and Architects SIA, Zürich, Switzerland

  • Silva B, Dalla Benetta M (2014) Compression and sonic tests to assess effectiveness of grout injection on three-leaf stone masonry walls. Int J Archit Herit Conserv Anal Restor 8(3):408–435. doi:10.1080/15583058.2013.826300

    Article  Google Scholar 

  • Tomaževič M, Sheppard P (1982) The strengthening of stone-masonry buildings for revitalization in seismic regions. In: Proceedings of the 7th European conference on earthquake engineering, Athens, Greece, vol 5, pp 275–282

  • Tomaževič M, Aničić D (1989) Research, technology and practice in evaluating, strengthening and retrofitting masonry buildings: Some Yugoslavia experiences. In: Proceedings of the international seminar on evaluating, strengthening and retrofitting masonry buildings, Arlington, USA

  • Tomaževič M (1999) Earthquake-resistant design of masonry buildings. Imperial College Press, London

    Google Scholar 

  • Tomaževič M, Lutman M, Bosiljkov V (2006) Robustness of hollow clay masonry units and seismic behaviour of masonry walls. Constr Build Mater 20(10):1028–1039

    Article  Google Scholar 

  • Tomaževič M (2007) Damage as a measure for earthquake-resistant design of masonry structures: Slovenian experience. Can J Civ Eng 34:1403–1412

    Article  Google Scholar 

  • Turnšek V, Čačovič F (1971) Some experimental results on the strength of brick masonry walls. In: West HWH, Speed KH (eds) Proceedings of the 2nd international brick masonry conference, stoke-on-trent, British Ceramic Res Assoc, London, pp 149–156

  • Turnšek V, Terčelj S, Sheppard P, Tomaževič M (1978) The seismic resistance of stone-masonry walls and buildings. In: Proceedings of the 6th European conference on earthquake engineering, Dubrovnik, Vol 3, Paper 32:255–262

  • Uranjek M, Bosiljkov V, Žarnić R, Bokan-Bosiljkov V (2012) In situ tests and seismic assessment of a stone-masonry building. Mater struct 45(6):861–879. doi:10.1617/s11527-011-9804-z

    Article  Google Scholar 

  • Vasconcelos G, Lourenço P (2009) Experimental characterization of stone masonry in shear and compression. Constr Build Mater 23:3337–3345. doi:10.1016/j.conbuildmat.2009.06.045

    Article  Google Scholar 

  • Vitruvius Pollio M (1960) The ten books of architecture (Trans. H. Morgan). Dover, New York

  • Wigger H, Budelmann H, Fostasy FS (2000) Methods of inspection and assessment of natural stone masonry buildings: example of the Runneburg (Thüringen). In: Wittman FH, Verhoef LGW (eds) Brick and brickwork: maintenance and restrengthening of materials and structures. AEDIFICATIO Publishers, Freiburg, pp 25–35

Download references

Acknowledgments

The results were achieved through the project PERPETUATE (www.perpetuate.eu), funded by the European Commission in the 7th Framework Programme (FP7/2007-2013), under Grant Agreement No. 244229 and by the Ministry of Science and Technology of the Republic of Slovenia. We would also like to thank Prof. Adrian W. Page from the University of Newcastle, Australia and two anonymous reviewers for their valuable comments, effort and time allocated to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlatko Bosiljkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kržan, M., Gostič, S., Cattari, S. et al. Acquiring reference parameters of masonry for the structural performance analysis of historical buildings. Bull Earthquake Eng 13, 203–236 (2015). https://doi.org/10.1007/s10518-014-9686-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-014-9686-x

Keywords

Navigation