Skip to main content

Advertisement

Log in

The Neurotoxic Effect of β-Amyloid Is Accompanied by Changes in the Mitochondrial Dynamics and Autophagy in Neurons and Brain Endothelial Cells in the Experimental Model of Alzheimer’s Disease

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

A comparative assessment of the expression of the mitochondrial fission marker Drp1 and the autophagy marker LC3 in neurons and endothelial cells in the hippocampus and entorhinal cortex during progression of cognitive deficit was performed in animals with intrahippocampal administration of β-amyloid. In both brain regions, the expression of Drp1 and LC3 in neuronal and endothelial cells was enhanced. The peak of cognitive impairment corresponded to the maximum expression of Drp1 and LC3 in hippocampal neurons and was preceded by an increase in the number of Drp1+ and LC3+ endothelial cells in this brain region. These data attests to a possible role of aberrant mitochondrial dynamics and autophagy of endothelial cells in the impairment of brain plasticity in the Alzheimer’s type neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sukhorukov VS, Mudzhiri NM, Voronkova AS, Baranich TI, Glinkina VV, Illarioshkin S.N. Mitochondrial Disorders in Alzheimer’s Disease. Biochemistry (Mosc). 2021;86(6):667-679. https://doi.org/10.1134/S0006297921060055

    Article  CAS  PubMed  Google Scholar 

  2. Salmina AB, Kharitonova EV, Gorina YV, Teplyashina EA, Malinovskaya NA, Khilazheva ED, Mosyagina AI, Morgun AV, Shuvaev AN, Salmin VV, Lopatina OL, Komleva YK. Blood-Brain Barrier and Neurovascular Unit In Vitro Models for Studying Mitochondria-Driven Molecular Mechanisms of Neurodegeneration. Int. J. Mol. Sci. 2021;22(9):4661. https://doi.org/10.3390/ijms22094661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Teplyashina EA, Gorina YaV, Khilazheva ED, Boytsova EB, Mosiagina AI, Malinovskaya NA, Komleva YK, Morgun AV, Uspenskaya YuA, Shuvaev AN, Salmina AB. Cells of the cerebral endothelium and perivascular astroglia in the regulation of neurogenesis. Ross. Fiziol. Zh. 2022;108(5):530-546. Russian. https://doi.org/10.31857/S0869813922050119

  4. Doll DN, Hu H, Sun J, Lewis SE, Simpkins JW, Ren X. Mitochondrial crisis in cerebrovascular endothelial cells opens the blood-brain barrier. Stroke. 2015;46(6):1681- 1679. https://doi.org/10.1161/STROKEAHA.115.009099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gorina YaV, Komleva YuK, Osipova ED, Morgun AV, Malinovskaya NA, Lopatina OL, Salmina AB. Aberrant angiogenesis in brain tissue in experimental Alzheimer’s disease. Byull. Sib. Med. 2020;19(4):46-52. Russian. https://doi.org/10.20538/1682-0363-2020-4-46-52

  6. Verscheijden LFM, Koenderink JB, de Wildt SN, Russel FGM. Differences in P-glycoprotein activity in human and rodent blood-brain barrier assessed by mechanistic modelling. Arch. Toxicol. 2021;95(9):3015-3029. https://doi.org/10.1007/s00204-021-03115-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. State Registration of the Computer Program No. 2020612777. Plugin for the ImageJ program for counting fluorescent labels on microphotographs. Salmin VV, Salmina AB, Morgun AV, eds. Byull. No. 3. Published March 3, 2020. Russian.

  8. Price JL, Ko AI, Wade MJ, Tsou SK, McKeel DW, Morris JC. Neuron number in the entorhinal cortex and CA1 in pre clinical Alzheimer disease. Arch. Neurol. 2001;58(9):1395-1402. https://doi.org/10.1001/archneur.58.9.1395

    Article  CAS  PubMed  Google Scholar 

  9. Salmina AB, Kharitonova EV, Gorina YV, Teplyashina EA, Malinovskaya NA, Khilazheva ED, Mosyagina AI, Morgun AV, Shuvaev AN, Salmin VV, Lopatina OL, Komleva YK. Blood-Brain Barrier and Neurovascular Unit In Vitro Models for Studying Mitochondria-Driven Molecular Mechanisms of Neurodegeneration. Int. J. Mol. Sci. 2021;22(9):4661. https://doi.org/10.3390/ijms22094661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang D, Ying J, Wang X, Zhao T, Yoon S, Fang Y, Zheng Q, Liu X, Yu W, Hua F. Mitochondrial dynamics: a key role in neurodegeneration and a potential target for neurodegenerative disease. Front. Neurosci. 2021;15:654785. https://doi.org/10.3389/fnins.2021.654785

  11. Wang W, Yin J, Ma X, Zhao F, Siedlak SL, Wang Z, Torres S, Fujioka H, Xu Y, Perry G, Zhu X. Inhibition of mitochondrial fragmentation protects against Alzheimer’s disease in rodent model. Hum. Mol. Genet. 2017;26(21):4118-4131. https://doi.org/10.1093/hmg/ddx299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Biron KE, Dickstein DL, Gopaul R, Jefferies WA. Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS One. 2011;6(8):e23789. https://doi.org/10.1371/journal.pone.0023789.

  13. Draoui N, de Zeeuw P, Carmeliet P. Angiogenesis revisited from a metabolic perspective: role and therapeutic implications of endothelial cell metabolism. Open Biol. 2017;7(12):170219. https://doi.org/10.1098/rsob.170219

  14. Zhao X, Nedvetsky P, Stanchi F, Vion AC, Popp O, Zühlke K, Dittmar G, Klussmann E, Gerhardt H. Endothelial PKA activity regulates angiogenesis by limiting autophagy through phosphorylation of ATG16L1. Elife. 2019;8:e46380. https://doi.org/10.7554/eLife.46380

  15. Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, Picot MC, Baldy-Moulinier M, Bockaert J, Crespel A, Lerner-Natoli M. Angiogenesis is associated with bloodbrain barrier permeability in temporal lobe epilepsy. Brain. 2007;130(Pt. 7):1942-1956. https://doi.org/10.1093/brain/awm118

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Averchuk.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 175, No. 3, pp. 291-297, March, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averchuk, A.S., Ryazanova, M.V., Baranich, T.I. et al. The Neurotoxic Effect of β-Amyloid Is Accompanied by Changes in the Mitochondrial Dynamics and Autophagy in Neurons and Brain Endothelial Cells in the Experimental Model of Alzheimer’s Disease. Bull Exp Biol Med 175, 315–320 (2023). https://doi.org/10.1007/s10517-023-05859-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-023-05859-2

Keywords

Navigation