Skip to main content
Log in

Human Umbilical Cord Mesenchymal Stromal Cell-Derived Microvesicles Express Surface Markers Identical to the Phenotype of Parental Cells

  • Translated from Kletochnye Tekhnologii v Biologii i Meditsine (Cell Technologies in Biology and Medicine)
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Production of microvesicles in culture of human umbilical cord multipotent mesenchymal stromal cells was studied and comparative analysis of the expression of some surface molecules (clusters of differentiation, CD) was performed. It was found that the mesenchymal stromal cells produce microvesicles in the amount sufficient for their detection by flow cytometry. Parallel analysis of the phenotypes of maternal mesenchymal stromal cells and secreted microvesicles revealed identical expression of surface molecules CD13, CD29, CD44, CD54, CD71, CD73, CD90, CD105, CD106, and HLA-I. The concentration of microvesicles in the conditioned medium was 17.9±4.6×106/ml; i.e. one cell produced ~40-50 (44.7±11.5) microvesicles over 2 days in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arno AI, Amini-Nik S, Blit PH, Al-Shehab M, Belo C, Herer E, Tien CH, Jeschke MG. Human Wharton’s jelly mesenchymal stem cells promote skin wound healing through paracrine signaling. Stem Cell Res. Ther. 2014;5(1):28. doi: https://doi.org/10.1186/scrt417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Batsali AK, Kastrinaki MC, Papadaki HA, Pontikoglou C. Mesenchymal stem cells derived from Wharton’s Jelly of the umbilical cord: biological properties and emerging clinical applications. Curr. Stem Cell Res. Ther. 2013;8(2):144-155.

    Article  CAS  Google Scholar 

  3. Can A, Celikkan FT, Cinar O. Umbilical cord mesenchymal stromal cell transplantations: a systemic analysis of clinical trials. Cytotherapy. 2017;19(12):1351-1382.

    Article  Google Scholar 

  4. Carvalho MM, Teixeira FG, Reis RL, Sousa N, Salgado AJ. Mesenchymal stem cells in the umbilical cord: phenotypic characterization, secretome and applications in central nervous system regenerative medicine. Curr. Stem Cell Res. Ther. 2011;6(3):221-228.

    Article  CAS  Google Scholar 

  5. Corrao S, La Rocca G, Lo Iacono M, Zummo G, Gerbino A, Farina F, Anzalone R. New frontiers in regenerative medicine in cardiology: the potential of Wharton’s jelly mesenchymal stem cells. Curr. Stem Cell Res. Ther. 2013;8(1):39-45.

    Article  CAS  Google Scholar 

  6. Davies JE, Walker JT, Keating A. Concise Review: Wharton’s Jelly: the rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Transl. Med. 2017;6(7):1620-1630.

    Article  Google Scholar 

  7. Detamore MS. Human umbilical cord mesenchymal stromal cells in regenerative medicine. Stem Cell Res. Ther. 2013;4(6):142. doi: https://doi.org/10.1186/scrt353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ding DC, Chang YH, Shyu WC, Lin SZ. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant. 2015;24(3):339-347.

    Article  Google Scholar 

  9. He H, Nagamura-Inoue T, Takahashi A, Mori Y, Yamamoto Y, Shimazu T, Tsunoda H, Tojo A. Immunosuppressive properties of Wharton’s jelly-derived mesenchymal stromal cells in vitro. Int. J. Hematol. 2015;102(3):368-378.

    Article  CAS  Google Scholar 

  10. Hsieh JY, Wang HW, Chang SJ, Liao KH, Lee IH, Lin WS, Wu CH, Lin WY, Cheng SM. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis. PLoS One. 2013;8(8):e72604. doi: https://doi.org/10.1371/journal.pone.0072604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kalaszczynska I, Ferdyn K. Wharton’s jelly derived mesenchymal stem cells: future of regenerative medicine? Recent findings and clinical significance. Biomed. Res. Int. 2015;2015. ID 430847. doi: https://doi.org/10.1155/2015/430847.

    Article  Google Scholar 

  12. Kamolz LP, Keck M, Kasper C. Wharton’s jelly mesenchymal stem cells promote wound healing and tissue regeneration. Stem Cell Res. Ther. 2014;5(3):62. doi: https://doi.org/10.1186/scrt451.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ophelders DR, Wolfs TG, Jellema RK, Zwanenburg A, Andriessen P, Delhaas T, Ludwig AK, Radtke S, Peters V, Janssen L, Giebel B, Kramer BW. Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia. Stem Cells Transl. Med. 2016;5(6):754-763.

    Article  CAS  Google Scholar 

  14. Pashoutan Sarvar D, Shamsasenjan K, Akbarzadehlaleh P. Mesenchymal stem cell-derived exosomes: new opportunity in cell-free therapy. Adv. Pharm. Bull. 2016;6(3):293-299.

    Article  Google Scholar 

  15. Ribeiro J, Gartner A, Pereira T, Gomes R, Lopes MA, Gonçalves C, Varejão A, Luís AL, Maurício A.C. Perspectives of employing mesenchymal stem cells from the Wharton’s jelly of the umbilical cord for peripheral nerve repair. Int. Rev. Neurobiol. 2013;108:79-120.

    Article  CAS  Google Scholar 

  16. Romanov YA, Balashova EE, Volgina NE, Kabaeva NV, Dugina TN, Sukhikh GT. Optimized protocol for isolation of multipotent mesenchymal stromal cells from human umbilical cord. Bull. Exp. Biol. Med. 2015;160(1):148-154.

    Article  CAS  Google Scholar 

  17. Romanov YA, Balashova EE, Volgina NE, Kabaeva NV, Dugina TN, Sukhikh GT. Human umbilical cord blood serum: effective substitute of fetal bovine serum for culturing of human multipotent mesenchymal stromal cells. Bull. Exp. Biol. Med. 2017;162(4):528-533.

    Article  Google Scholar 

  18. Romanov YA, Balashova EE, Volgina NE, Kabaeva NV, Dugina TN, Sukhikh GT. Expression of surface molecules in human mesenchymal stromal cells co-cultured with nucleated umbilical cord blood cells. Bull. Exp. Biol. Med. 2017;162(4):578-582.

    Article  CAS  Google Scholar 

  19. Romanov YA, Volgina NE, Balashova EE, Kabaeva NV, Dugina TN, Sukhikh GT. Human umbilical cord mesenchymal stromal cells support viability of umbilical cord blood hematopoietic stem cells but not the “stemness” of their progeny in co-culture. Bull. Exp. Biol. Med. 2017;163(4):523-527.

    Article  Google Scholar 

  20. Taghizadeh RR, Cetrulo KJ, Cetrulo CL. Wharton’s Jelly stem cells: future clinical applications. Placenta. 2011;32(Suppl 4):S311-S315.

    Article  CAS  Google Scholar 

  21. Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells — current trends and future prospective. Biosci. Rep. 2015;35(2). pii: e00191. doi: https://doi.org/10.1042/BSR20150025.

    Article  CAS  Google Scholar 

  22. Zhang B, Shen L, Shi H, Pan Z, Wu L, Yan Y, Zhang X, Mao F, Qian H, Xu W. Exosomes from human umbilical cord mesenchymal stem cells: identification, purification, and biological characteristics. Stem Cells Int. 2016;2016. ID 1929536. doi: https://doi.org/10.1155/2016/1929536.

    Google Scholar 

  23. Zhang B, Wu X, Zhang X, Sun Y, Yan Y, Shi H, Zhu Y, Wu L, Pan Z, Zhu W, Qian H, Xu W. Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/b-catenin pathway. Stem Cells Transl. Med. 2015;4(5):513-522. doi: https://doi.org/10.5966/sctm.2014-0267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao Y, Sun X, Cao W, Ma J, Sun L, Qian H, Zhu W, Xu W. Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury. Stem Cells Int. 2015;2015. ID 761643. doi: https://doi.org/10.1155/2015/761643.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Romanov.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 3, pp. 146-151, September, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, Y.A., Volgina, N.E., Dugina, T.N. et al. Human Umbilical Cord Mesenchymal Stromal Cell-Derived Microvesicles Express Surface Markers Identical to the Phenotype of Parental Cells. Bull Exp Biol Med 166, 124–129 (2018). https://doi.org/10.1007/s10517-018-4300-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-018-4300-x

Key Words

Navigation