Skip to main content
Log in

Evaluation of the Efficiency of Lytic Mycobacteriophage D29 on the Model of M. tuberculosis-Infected Macrophage RAW 264 Cell Line

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Culture of mouse macrophages (RAW 264.7 ATCC strain) in wells of a 6-well plate was infected with M. tuberculosis in proportion of 15 mycobacteria per one macrophage and then treated with a lytic strain of mycobacteriophage D29. Antibacterial efficacy of mycobacteriophages was studied using D29 phage (activity 108 plaque-forming units/ml) previously purified by ion exchange chromatography. After single and double 24-h treatment, the lysed cultures of macrophages were inoculated onto Middlebrook 7H10 agar medium. The number of mycobacterial colonies in control and test wells (at least 3 wells in each group) was 300.178±12.500 and 36.0±5.4, respectively (p<0.01).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adriaenssens EM, Lehman SM, Vandersteegen K, Vandenheuvel D, Philippe DL, Cornelissen A, Clokie MR, García AJ, De Proft M, Maes M, Lavigne R.CIM(®) monolithic anion-exchange chromatography as a useful alternative to CsCl gradient purification of bacteriophage particles. Virology. 2012;434(2):265-270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Eltringham IJ, Wilson SM, Drobniewski FA. Evaluation of a bacteriophage-based assay (phage amplified biologically assay) as a rapid screen for resistance to isoniazid, ethambutol, streptomycin, pyrazinamide, and ciprofloxacin among clinical isolates of Mycobacterium tuberculosis. J. Clin. Microbiol. 1999;37(11):3528-3532.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ford ME, Sarkis GJ, Belanger AE, Hendrix RW, Hatfull GF. Genome structure of mycobacteriophage D29: implications for phage evolution. J. Mol. Biol. 1998;279(1):143-164.

    Article  CAS  PubMed  Google Scholar 

  4. Gan Y, Yao Y, Guo S. The dormant cells of Mycobacterium tuberculosis may be resuscitated by targeting-expression system of recombinant mycobacteriophage-Rpf: implication of shorter course of TB chemotherapy in the future. Med. Hypotheses. 2015;84(5):477-480.

    Article  CAS  PubMed  Google Scholar 

  5. Hatfull GF. Molecular genetics of mycobacteriophages. Microbiol. Spectr. 2014;2(2):1-36.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kamilla S, Jain V. Mycobacteriophage D29 holin C-terminal region functionally assists in holin aggregation and bacterial cell death. FEBS J. 2016;283(1):173-190.

    Article  CAS  PubMed  Google Scholar 

  7. Liu K, Wen Z, Li N, Yang W, Wang J, Hu L, Dong X, Lu J, Li J. Impact of relative humidity and collection media on mycobacteriophage D29 aerosol. Appl. Environ. Microbiol. 2012;78(5):1466-1472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nieth A, Verseux C, Barnert S, Süss R, Römer W. A first step toward liposome mediated intracellular bacteriophage therapy. Expert Opin. Drug Deliv. 2015;12(9):1411-1424.

    Article  PubMed  Google Scholar 

  9. O’Flaherty S, Ross RP, Coffey A. Bacteriophage and their lysins for elimination of infectious bacteria. FEMS Microbiol. Rev. 2009;33(4):801-819.

    Article  PubMed  Google Scholar 

  10. Payne KM, Hatfull GF. Mycobacteriophage endolysins: diverse and modular enzymes withmultiple catalytic activities. PLoS One. 2012;7(3):e34052. doi: https://doi.org/10.1371/journal.pone.0034052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Peng L, Chen BW, Luo YA, Wang GZ. Effect of mycobacteriophage to intracellular mycobacteria in vitro. Chin. Med. J. (Engl.) 2006;119(8):692-695.

    Google Scholar 

  12. Pholwat S, Ehdaie B, Foongladda S, Kelly K, Houpt E. Real-time PCR using mycobacteriophage DNA for rapid phenotypic drug susceptibility results for Mycobacterium tuberculosis. J. Clin. Microbiol. 2012;50(3):754-761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rybniker J, Kramme S, Small PL. Host range of 14 mycobacteriophages in Mycobacterium ulcerans and seven other mycobacteria including Mycobacterium tuberculosis — application for identification and susceptibility testing. J. Med. Microbiol. 2006;55(Pt 1):37-42.

    Article  CAS  PubMed  Google Scholar 

  14. Xiong X, Zhang HM, Wu TT, Xu L, Gan YL, Jiang LS, Zhang L, Guo SL. Titer dynamic analysis of D29 within MTB-infected macrophages and effect on immune function of macrophages. Exp. Lung Res. 2014;40(2):86-98.

    Article  CAS  PubMed  Google Scholar 

  15. Yosef I, Kiro R, Molshanski-Mor S, Edgar R, Qimron U. Different approaches for using bacteriophages against antibiotic resistant bacteria. Bacteriophage. 2014;4(1):e28491.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Vladimirsky.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 164, No. 9, pp. 326-329, September, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapenkova, M.B., Smirnova, N.S., Rutkevich, P.N. et al. Evaluation of the Efficiency of Lytic Mycobacteriophage D29 on the Model of M. tuberculosis-Infected Macrophage RAW 264 Cell Line. Bull Exp Biol Med 164, 344–346 (2018). https://doi.org/10.1007/s10517-018-3986-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-018-3986-0

Key Words

Navigation