Skip to main content
Log in

Syngeneic and Xenogeneic Transplantations of Mesenchymal Stromal Cells Modify the Production of Reactive Oxygen Species by Blood Mononuclears of Mice

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

In vivo modifying effects of bone marrow mesenchymal stromal cells of humans and laboratory mice on ROS production by mouse blood mononuclears are studied by luminol-dependent zymosan-induced chemiluminescence after syngeneic and xenogeneic transplantation into systemic blood flow. The chemiluminescent activity of mouse blood mononuclears has increased early (1 day) after syngeneic (mouse mesenchymal stromal cells) and xenogeneic (human mesenchymal stromal cells) transplantation. Later, 7-21 days after syngeneic and xenogeneic transplantation, the chemiluminescent activity of mouse mononuclears is suppressed. The probable mechanisms of involvement of the transplanted mesenchymal stromal cells in reprogramming of the blood mononuclear phagocytes from proinflammatory (M1) to anti-inflammatory (M2) phenotype under conditions of their in vivo interactions are discussed; a frequent manifestation of this reprogramming is transition of the phase of activation into inhibition of ROS-producing activity of macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreeva ER, Buravkova LB. Multipotent mesenchymal stromal and immune cells interaction: reciprocal effects. Ross. Fiziol. Zh. 2012;98(12):1441-1459. Russian.

    CAS  Google Scholar 

  2. Mayanskaya IV, Goganova AYu, Tolkachova NI, Achkinazi VI, Mayansky AN. Immunosuppressive activity of mesenchymal stem (stromal) cells. Immunologiya. 2013;34(2):122-128. Russian.

    Google Scholar 

  3. Tsyb AF, Petrov VN, Konoplyannikov AG, Saypina EV, Lepechina LA, Kalsina SSh, Semenkova IV, Agaeva EV. In vitro inhibitory effect of mesenchymal stem cells on zymosan-induced production of reactive oxygen species. Bull. Exp. Biol. Med. 2008;146(1):158-164.

    Article  CAS  PubMed  Google Scholar 

  4. Cassatella MA, Mosna F, Micheletti A, Lisi V, Tamassia N, Cont C, Calzetti F, Pelletier M, Pizzolo G, Krampera M. Tolllike receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells. 2011;29(6):1001-1011.

    Article  CAS  PubMed  Google Scholar 

  5. Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ. Antiinflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-κB signaling in resident macrophages. Blood. 2011;118(2):330-338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Glenn JD, Whartenby KA. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy. World J. Stem Cells. 2014;6(5):526-539.

    Article  Google Scholar 

  7. Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp. Hematol. 2009;37(12):1445-1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res. Ther. 2016;7:7. doi: https://doi.org/10.1186/s13287-015-0271-2.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mesenchymal Stem Cells. Methods and protocols / M.Gnecchi N.Y, 2016.

  10. Molina E.R, Smith B.T, Shah S.R, Shin H, Mikos A.G. Immunomodulatory properties of stem cells and bioactive molecules for tissue engineering. J. Control. Release. 2015;219:107-118.

    Article  CAS  PubMed  Google Scholar 

  11. Raffaghello L, Bianchi G, Bertolotto M, Montecucco F, Busca A, Dallegri F, Ottonello L, Pistoia V. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells. 2008;26(1):151-162.

    Article  CAS  PubMed  Google Scholar 

  12. Sharma R. R, Pollock K, Hubel A, McKenna D. Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion. 2014;54(5):1418-1437.

    Article  CAS  PubMed  Google Scholar 

  13. Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front. Immunol. 2014;5:614. doi: https://doi.org/10.3389/fimmu.2014.00614.

    PubMed  PubMed Central  Google Scholar 

  14. Waterman R.S, Tomchuck S.L, Henkle S.L, Betancourt A.M. A new Mesenchymal Stem Cell (MSC) paradigm: polarization into a pro-inflammotory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One. 2010;5(4):e10088. doi: https://doi.org/10.1371/journal. pone.0010088.

  15. Zheng G, Ge M, Qiu G, Shu Q, Xu J. Mesenchymal stromal cells affect disease outcomes via macrophage polarization. Stem Cells Int. 2015;2015. ID 989473. doi: 10.1155/2015/989473.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Agaeva.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 163, No. 7, pp. 95-99, July, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agaeva, E.V., Petrov, V.N., Konoplyannikov, A.G. et al. Syngeneic and Xenogeneic Transplantations of Mesenchymal Stromal Cells Modify the Production of Reactive Oxygen Species by Blood Mononuclears of Mice. Bull Exp Biol Med 164, 80–84 (2017). https://doi.org/10.1007/s10517-017-3929-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-017-3929-1

Key Words

Navigation