Skip to main content
Log in

Adipokine and Cytokine Profiles of Epicardial and Subcutaneous Adipose Tissue in Patients with Coronary Heart Disease

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The content of adipokines, pro- and anti-inflammatory cytokines were studied in adipocytes isolated from epicardial and subcutaneous adipose tissue of 24 coronary heart disease patients. The content of leptin and soluble leptin receptor in adipocytes of epicardial adipose tissue was higher by 28.6 and 56.9% and the level of adiponectin was lower by 33% than in adipocytes of the subcutaneous fat. In culture of epicardial adipocytes, the levels of proinflammatory cytokines TNF-α and IL-1 were higher. Subcutaneous adipose tissue adipocytes were characterized by higher levels of anti-inflammatory cytokines IL-10 and FGF-β. In epicardial adipocytes of coronary heart disease patients, the concentrations of leptin, TNF-α, and IL-1 were higher, while the levels of defense regulatory molecules (adiponectin, IL-10, and FGF-β) were lower than in subcutaneous adipocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gruzdeva OV, Akbasheva OE, Matveeva VG, Dyleva YuA, Palicheva EI, Karetnikova VN, Borodkina DA, Kokov AN, Fedorova TS, Barbarash OL. Cytokine profile in visceral obesity and adverse cardiovascular prognosis of myocardial infarction. Med. Immunol. 2015;17(3):211-220. Russian.

    Article  Google Scholar 

  2. Samorodskaya IV, Kondrikova NV. Cardiovascular diseases and obesity. Possibilities of bariatric surgery. Kompleksnye Probl. Serd.-Sosud. Zabol. 2015;(3):53-60. Russian.

    Google Scholar 

  3. Chumakova GA, Veselovskaya NG, Gritsenko OV, Kozarenko AA, Subbotin EA. Epicardial adiposity as risk factor of coronary atherosclerosis. Kardiologiya. 2013;53(1):51-55. Russian.

    CAS  PubMed  Google Scholar 

  4. Alexopoulos N, Katritsis D, Raggi P. Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis. Atherosclerosis. 2014;233(1):104-112.

    Article  CAS  PubMed  Google Scholar 

  5. Barbarash O, Gruzdeva O, Uchasova E, Dyleva Y, Belik E, Akbasheva O, Karetnikova V, Kokov A. The role of adipose tissue and adipokines in the manifestation of type 2 diabetes in the long-term period following myocardial infarction. Diabetol. Metab. Syndr. 2016;8:24. doi: https://doi.org/10.1186/s13098-016-0136-6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carswell KA, Lee M, Fried SK. Culture of isolated human adipocytes and isolated adipose tissue. Methods Mol. Biol. 2012;806:203-214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Drosos I, Chalikias G, Pavlaki M, Kareli D, Epitropou G, Bougioukas G, Mikroulis D, Konstantinou F, Giatromanolaki A, Ritis K, Munzel T, Tziakas D, Konstantinides S, Schafer K. Differences between perivascular adipose tissue surrounding the heart and the internal mammary artery: possible role for the leptin-inflammation-fibrosis-hypoxia axis. Clin. Res. Cardiol. 2016;105(11):887-900.

    Article  CAS  PubMed  Google Scholar 

  8. Gaborit B, Venteclef N, Ancel P, Pelloux V, Gariboldi V, Leprince P, Amour J, Hatem S.N, Jouve E, Dutour A, Clement K. Human epicardial adipose tissue has a specific transcriptomic signature depending on its anatomical peri-atrial, peri-ventricular, or peri-coronary location. Cardiovasc. Res. 2015;108(1):62-73.

  9. Hui X, Feng T, Liu Q, Gao Y, Xu A. The FGF21-adiponectin axis in controlling energy and vascular homeostasis. J. Mol. Cell Biol. 2016;8(2):110-119.

    Article  PubMed  Google Scholar 

  10. Rothenbacher D, Brenner H, Marz W, Koenig W. Adiponectin, risk of coronary heart disease and correlations with cardiovascular risk markers. Eur. Heart J. 2005;26(16):1640-1646.

    Article  CAS  PubMed  Google Scholar 

  11. Suga H, Matsumoto D, Inoue K, Shigeura T, Eto H, Aoi N, Kato H, Abe H, Yoshimura K. Numerical measurement of viable and nonviable adipocytes and other cellular components in aspirated fat tissue. Plast. Reconstr. Surg. 2008;122(1):103-114.

    Article  CAS  PubMed  Google Scholar 

  12. Vacca M, Di Eusanio M, Cariello M, Graziano G, D’Amore S, Petridis F.D, D’orazio A, Salvatore L, Tamburro A, Folesani G, Rutigliano D, Pellegrini F, Sabba C, Palasciano G, Di Bartolomeo R, Moschetta A. Integrative miRNA and whole-genome analyses of epicardial adipose tissue in patients with coronary atherosclerosis. Cardiovasc. Res. 2016;109(2):228-239.

  13. Venteclef N, Guglielmi V, Balse E, Gaborit B, Cotillard A, Atassi F, Amour J, Leprince P, Dutour A, Clement K, Hatem S.N. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur. Heart J. 2015;36(13):795-805a.

    Article  PubMed  Google Scholar 

  14. Wu FZ, Wu CC, Kuo PL, Wu MT. Differential impacts of cardiac andabdominal ectopic fat deposits on cardiometabolic risk stratification. BMC Cardiovasc. Dis. 2016;16:20. doi: https://doi.org/10.1186/s12872-016-0195-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Gruzdeva.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 163, No. 5, pp. 560-563, May, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruzdeva, O.V., Akbasheva, O.E., Dyleva, Y.A. et al. Adipokine and Cytokine Profiles of Epicardial and Subcutaneous Adipose Tissue in Patients with Coronary Heart Disease. Bull Exp Biol Med 163, 608–611 (2017). https://doi.org/10.1007/s10517-017-3860-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-017-3860-5

Key Words

Navigation