Skip to main content
Log in

Role of ATP-Sensitive K+ Channels in Myocardial Infarct Size-Limiting Effect of Chronic Continuous Normobaric Hypoxia

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The role of KATP channels in myocardial infarct size-limiting effect of chronic continuous normobaric hypoxia was examined in a rat model based on a 20-min coronary occlusion and subsequent 3-h reperfusion. Rats were adapted to normobaric hypoxia (12% O2) for 21 days. This hypoxia produced a pronounced infarct size-limiting effect, which had been prevented by 0.3 mg/kg glibenclamide, a non-selective inhibitor of entire pool of KATP channels, or 5 mg/kg 5-hydroxydecanoate, an inhibitor of mitochondrial KATP channels. The study highlighted the important role of mitochondrial KATP channels in myocardial infarct size-limiting effect of chronic normobaric hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Naryzhnaya NV, Maslov LN, Prokudina ES, Lishmanov YB. Contribution of opioid receptors to the cytoprotective effect of the adaptation to chronic hypoxia at anoxia/reoxygenation of isolated cardiomyocytes. Bull. Exp. Biol. Med. 2015;159(2):209-212.

    Article  CAS  PubMed  Google Scholar 

  2. Naryzhnaya NV, Maslov LN, Tsibulnikov SYu, Prokudina ES, Lishmanov YuB. Involvement of no-synthase in the infarct reducing effect of continuous chronic normobaric hypoxia. Ros. Fiziol. Zh. 2015;101(8):921-928. Russian.

    CAS  Google Scholar 

  3. Naryzhnaya NV, Nackar Ya, Maslov LN, Lishmanov YuB, Kolar F, Lasukova TV. The role of sarcolemmal and mitochondrial KATP-channels in realization of the cardioprotection and antiarrhythmic effect of different regimens of hypobaric adaptation. Ros. Fiziol. Zh. 2009;95(8):837-849. Russian.

    CAS  Google Scholar 

  4. Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD. Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ. Res. 2005;97(4):329-336.

    Article  CAS  PubMed  Google Scholar 

  5. Costa AD, Garlid KD. Intramitochondrial signaling: interactions among mitoKATP, PKCepsilon, ROS, and MPT. Am. J. Physiol. Heart Circ. Physiol. 2008;295(2):H874-H882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Costa AD, Pierre SV, Cohen MV, Downey JM, Garlid KD. cGMP signalling in pre- and post-conditioning: the role of mitochondria. Cardiovasc. Res. 2008;77(2):344-352.

    Article  CAS  PubMed  Google Scholar 

  7. Halestrap AP, Richardson AP. The mitochondrial permeability transition: a current perspective on its identity and role in ischaemia/reperfusion injury. J. Mol. Cell. Cardiol. 2015;78):129-141.

  8. Holzerová K, Hlaváčková M, Žurmanová J, Borchert G, Neckář J, Kolář F, Novák F, Nováková O. Involvement of PKCepsilon in cardioprotection induced by adaptation to chronic continuous hypoxia. Physiol. Res. 2015;64(2):191-201.

    PubMed  Google Scholar 

  9. Maslov LN, Naryzhnaya NV, Prokudina ES, Kolar F, Gorbunov AS, Zhang Y, Wang H, Tsibulnikov SY, Portnichenko AG, Lasukova TV, Lishmanov YB. Preserved cardiac mitochondrial function and reduced ischaemia/reperfusion injury afforded by chronic continuous hypoxia: role of opioid receptors. Clin. Exp. Pharmacol. Physiol. 2015;42(5):496-501.

    Article  CAS  PubMed  Google Scholar 

  10. Maslov LN, Naryzhnaia NV, Tsibulnikov SY, Kolar F, Zhang Y, Wang H, Gusakova AM, Lishmanov YB. Role of endogenous opioid peptides in the infarct size-limiting effect of adaptation to chronic continuous hypoxia. Life Sci. 2013;93(9-11):373-379.

    Article  CAS  PubMed  Google Scholar 

  11. Neckár J, Marková I, Novák F, Nováková O, Szárszoi O, Ost’ádal B, Kolár F. Increased expression and altered subcellular distribution of PKC-delta in chronically hypoxic rat myocardium: involvement in cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 2005;288(4):H1566-H1572.

    Article  PubMed  Google Scholar 

  12. Penna CM. Perrelli G, Pagliaro P. Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxid. Redox Signal. 2013;18(5):556-599.

    Article  CAS  PubMed  Google Scholar 

  13. Schultz JE. Yao Z, Cavero I, Gross GJ. Glibenclamide-induced blockade of ischemic preconditioning is time dependent in intact rat heart. Am. J. Physiol. 1997;272(6, Pt 2):H2607-H2615.

    CAS  PubMed  Google Scholar 

  14. Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol. Rev. 2003;83(4):1113-1151.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Naryzhnaya.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 163, No. 1, pp. 28-31, January, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lishmanov, Y.B., Naryzhnaya, N.V., Tsibul’nikov, S.Y. et al. Role of ATP-Sensitive K+ Channels in Myocardial Infarct Size-Limiting Effect of Chronic Continuous Normobaric Hypoxia. Bull Exp Biol Med 163, 22–24 (2017). https://doi.org/10.1007/s10517-017-3728-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-017-3728-8

Key Words

Navigation