Skip to main content
Log in

Gaussian processes autonomous mapping and exploration for range-sensing mobile robots

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Most of the existing robotic exploration schemes use occupancy grid representations and geometric targets known as frontiers. The occupancy grid representation relies on the assumption of independence between grid cells and ignores structural correlations present in the environment. We develop a Gaussian processes (GPs) occupancy mapping technique that is computationally tractable for online map building due to its incremental formulation and provides a continuous model of uncertainty over the map spatial coordinates. The standard way to represent geometric frontiers extracted from occupancy maps is to assign binary values to each grid cell. We extend this notion to novel probabilistic frontier maps computed efficiently using the gradient of the GP occupancy map. We also propose a mutual information-based greedy exploration technique built on that representation that takes into account all possible future observations. A major advantage of high-dimensional map inference is the fact that such techniques require fewer observations, leading to a faster map entropy reduction during exploration for map building scenarios. Evaluations using the publicly available datasets show the effectiveness of the proposed framework for robotic mapping and exploration tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The required localization accuracy is subject to the specific application.

References

  • Amigoni, F., & Caglioti, V. (2010). An information-based exploration strategy for environment mapping with mobile robots. Robotics and Autonomous Systems, 58(5), 684–699.

    Article  Google Scholar 

  • Bajcsy, R. (1988). Active perception. Proceedings of the IEEE, 76(8), 966–1005.

    Article  Google Scholar 

  • Binney, J., & Sukhatme, G. S. (2012). Branch and bound for informative path planning. In Proceedings IEEE international conference on robotics and automation (pp 2147–2154). IEEE.

  • Blanco, J. L., Fernandez-Madrigal, J. A., & González, J. (2008). A novel measure of uncertainty for mobile robot SLAM with rao-blackwellized particle filters. The International Journal of Robotics Research, 27(1), 73–89.

    Article  Google Scholar 

  • Bourgault, F., Makarenko, A. A., Williams, S. B., Grocholsky, B., & Durrant-Whyte, H. F. (2002). Information based adaptive robotic exploration. In In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, IEEE (Vol. 1, pp. 540–545).

  • Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., et al. (2016). Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Transactions on Robotics, 32(6), 1309–1332.

    Article  Google Scholar 

  • Carlone, L., Du, J., Ng, M. K., Bona, B., & Indri, M. (2010). An application of Kullback–Leibler divergence to active SLAM and exploration with particle filters. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 287–293). IEEE.

  • Carlone, L., Du, J., Ng, M. K., Bona, B., & Indri, M. (2014). Active slam and exploration with particle filters using Kullback-Leibler divergence. Journal of Intelligent and Robotic Systems, 75(2), 291–311.

    Article  Google Scholar 

  • Carrillo, H., Dames, P., Kumar, V., & Castellanos, J. A. (2015). Autonomous robotic exploration using occupancy grid maps and graph SLAM based on Shannon and Rényi entropy. In Proceedings IEEE international conference on robotics and automation (pp. 487–494). IEEE.

  • Carrillo, H., Reid, I., & Castellanos, J. A. (2012). On the comparison of uncertainty criteria for active SLAM. In Proceedings IEEE international conference on robotics and automation (pp. 2080–2087). IEEE.

  • Charrow, B. (2015). Information-theoretic active perception for multi-robot teams. Ph.D. thesis, University of Pennsylvania.

  • Charrow, B., Kumar, V., & Michael, N. (2014). Approximate representations for multi-robot control policies that maximize mutual information. Autonomous Robots, 37(4), 383–400.

    Article  Google Scholar 

  • Charrow, B., Liu, S., Kumar, V., & Michael, N. (2015). Information-theoretic mapping using Cauchy–Schwarz quadratic mutual information. In Proceedings IEEE international conference on robotics and automation (pp. 4791–4798). IEEE.

  • Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. London: Wiley.

    Book  MATH  Google Scholar 

  • Doucet, A, De Freitas, N., Murphy, K., & Russell, S. (2000). Rao–Blackwellised particle filtering for dynamic Bayesian networks. In Proceedings of the 16th conference on uncertainty in artificial intelligence (pp. 176–183). Morgan Kaufmann Publishers Inc.

  • Elfes, A. (1987). Sonar-based real-world mapping and navigation. IEEE Journal of Robotics and Automation, 3(3), 249–265.

    Article  Google Scholar 

  • Faigl, J., Kulich, M., & Přeučil, L. (2012). Goal assignment using distance cost in multi-robot exploration. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 3741–3746). IEEE.

  • Fawcett, T. (2006). An introduction to roc analysis. Pattern Recognition Letters, 27(8), 861–874.

    Article  MathSciNet  Google Scholar 

  • Feder, H. J. S., Leonard, J. J., & Smith, C. M. (1999). Adaptive mobile robot navigation and mapping. The International Journal of Robotics Research, 18(7), 650–668.

    Article  Google Scholar 

  • González-Banos, H., & Latombe, J. (2002). Navigation strategies for exploring indoor environments. The International Journal of Robotics Research, 21(10–11), 829–848.

    Article  Google Scholar 

  • Hadsell, R., Bagnell, J. A., Huber, D., & Hebert, M. (2010). Space-carving kernels for accurate rough terrain estimation. The International Journal of Robotics Research, 29(8), 981–996.

    Article  Google Scholar 

  • He, R., Brunskill, E., & Roy, N. (2010). Puma: Planning under uncertainty with macro-actions. In AAAI.

  • Hensman, J., Fusi, N., & Lawrence, N. D. (2013). Gaussian processes for big data. Preprint. arXiv:1309.6835.

  • Hollinger, G. A. (2015). Long-horizon robotic search and classification using sampling-based motion planning. In Proceedings of Robotics: Science and systems. Rome, Italy. https://doi.org/10.15607/RSS.2015.XI.010.

  • Hollinger, G. A., & Sukhatme, G. S. (2014). Sampling-based robotic information gathering algorithms. The International Journal of Robotics Research, 33(9), 1271–1287.

    Article  Google Scholar 

  • Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard, W. (2013). OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots, 34(3), 189–206.

    Article  Google Scholar 

  • Howard, A., & Roy, N. (2003). The robotics data set repository (Radish). http://radish.sourceforge.net.

  • Ila, V., Porta, J., & Andrade-Cetto, J. (2010). Information-based compact Pose SLAM. IEEE Transactions on Robotics, 26(1), 78–93.

    Article  Google Scholar 

  • Ghaffari Jadidi, M., Gan, L., Parkison, S. A., Li, J., & Eustice, R. M. (2017a). Gaussian processes semantic map representation. In RSS workshop on spatial-semantic representations in robotics.

  • Ghaffari Jadidi, M., Valls Miro, J., Carreño, R. V., Andrade-Cetto, J., & Dissanayake, G. (2013a). Exploration in information distribution maps. In RSS workshop on robotic exploration, monitoring, and information content.

  • Ghaffari Jadidi, M., Valls Miro, J., Carreño, R. V., Andrade-Cetto, J., & Dissanayake, G. (2013b). Exploration using an information-based reaction–diffusion process. In Australasian conference on robotics and automation.

  • Ghaffari Jadidi, M., Valls Miro, J., & Dissanayake, G. (2015). Mutual information-based exploration on continuous occupancy maps. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 6086–6092).

  • Ghaffari Jadidi, M., Valls Miro, J., & Dissanayake, G. (2016). Sampling-based incremental information gathering with applications to robotic exploration and environmental monitoring. arXiv:1607.01883. http://arxiv.org/abs/1607.01883.

  • Ghaffari Jadidi, M., Valls Miro, J., & Dissanayake, G. (2017b). Warped Gaussian processes occupancy mapping with uncertain inputs. IEEE Robotics and Automation Letters, 2(2), 680–687.

    Article  Google Scholar 

  • Ghaffari Jadidi, M., Valls Miro, J., Valencia, R., & Andrade-Cetto, J. (2014). Exploration on continuous Gaussian process frontier maps. In Proceedings IEEE international conference on robotics and automation (pp. 6077–6082).

  • Julian, B. J., Karaman, S., & Rus, D. (2014). On mutual information-based control of range sensing robots for mapping applications. The International Journal of Robotics Research, 33(10), 1375–1392.

    Article  Google Scholar 

  • Keidar, M., & Kaminka, G. A. (2013). Efficient frontier detection for robot exploration. The International Journal of Robotics Research. https://doi.org/10.1177/0278364913494911.

  • Kim, A., & Eustice, R. M. (2015). Active visual SLAM for robotic area coverage: Theory and experiment. The International Journal of Robotics Research, 34(4–5), 457–475.

    Article  Google Scholar 

  • Kim, S., & Kim, J. (2012). Building occupancy maps with a mixture of Gaussian processes. In Proceedings IEEE international conference on robotics and automation (pp. 4756–4761). IEEE.

  • Kim, S., & Kim, J. (2013a). Continuous occupancy maps using overlapping local Gaussian processes. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 4709–4714). IEEE.

  • Kim, S., & Kim, J. (2013b). Occupancy mapping and surface reconstruction using local Gaussian processes with Kinect sensors. IEEE Transactions on Cybernetics, 43(5), 1335–1346.

    Article  Google Scholar 

  • Kim, S., & Kim, J. (2015). GPmap: A unified framework for robotic mapping based on sparse Gaussian processes. In L. Mejias, P. Corke, & J. Roberts (Eds.), Field and Service Robotics Springer Tracts in Advanced Robotics (Vol. 105). Cham: Springer. https://doi.org/10.1007/978-3-319-07488-7_22

  • Konolige, K. (1997). Improved occupancy grids for map building. Autonomous Robots, 4(4), 351–367.

    Article  Google Scholar 

  • Krause, A., & Guestrin, C. (2005). Near-optimal value of information in graphical models. In Conference on uncertainty in artificial intelligence (UAI).

  • Krause, A., & Guestrin, C. (2007). Nonmyopic active learning of Gaussian processes: An exploration–exploitation approach. In Proceedings of the 24th international conference on machine learning (pp. 449–456). ACM.

  • Lang, T., Plagemann, C., & Burgard, W. (2007). Adaptive non-stationary kernel regression for terrain modeling. In Proceedings of Robotics: Science and systems. Atlanta, GA. https://doi.org/10.15607/RSS.2007.III.011.

  • Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory, 37(1), 145–151.

    Article  MathSciNet  MATH  Google Scholar 

  • Makarenko, A., Williams, S., Bourgault, F., & Durrant-Whyte, H. (2002). An experiment in integrated exploration. In In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (Vol. 1, pp. 534–539).

  • Merali, R. S., & Barfoot, T. D. (2014). Optimizing online occupancy grid mapping to capture the residual uncertainty. In Proceedings IEEE international conference on robotics and automation (pp. 6070–6076). IEEE.

  • Moravec, H. P., & Elfes, A. (1985). High resolution maps from wide angle sonar. In Proceedings. 1985 IEEE international conference on robotics and automation (Vol. 2, pp. 116–121). IEEE.

  • Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cambridge: MIT Press.

    MATH  Google Scholar 

  • O’Callaghan, S. T., & Ramos, F. (2011). Continuous occupancy mapping with integral kernels. In Proceedings of the AAAI conference on artificial intelligence (pp. 1494–1500).

  • O’Callaghan, S. T., & Ramos, F. (2012). Gaussian process occupancy maps. The International Journal of Robotics Research, 31(1), 42–62.

    Article  Google Scholar 

  • O’Callaghan, S. T., Ramos, F. T., & Durrant-Whyte, H. (2009). Contextual occupancy maps using Gaussian processes. In Proceedings IEEE international conference on robotics and automation (pp. 1054–1060). IEEE.

  • Pukelsheim, F. (2006). Optimal design of experiments. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  MATH  Google Scholar 

  • Ramos, F., & Ott, L. (2015). Hilbert maps: Scalable continuous occupancy mapping with stochastic gradient descent. In Proceedings of Robotics: Science and systems. Rome, Italy. https://doi.org/10.15607/RSS.2015.XI.002.

  • Rasmussen, C., & Williams, C. (2006). Gaussian processes for machine learning (Vol. 1). Cambridge: MIT Press.

    MATH  Google Scholar 

  • Russell, S. J., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  • Sim, R., & Roy, N. (2005). Global A-optimal robot exploration in SLAM. In Proceedings IEEE international conference on robotics and automation (pp. 661–666). IEEE.

  • Singh, A., Krause, A., Guestrin, C., & Kaiser, W. J. (2009). Efficient informative sensing using multiple robots. Journal of Artificial Intelligence Research, 34, 707–755.

    MathSciNet  MATH  Google Scholar 

  • Snelson, E., & Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-inputs. In Advances in neural information processing systems (Vol. 18, pp. 1257–1264).

  • Stachniss, C., Grisetti, G., & Burgard, W. (2005). Information gain-based exploration using Rao–Blackwellized particle filters. In Proceedings of Robotics: Science and systems. Cambridge. https://doi.org/10.15607/RSS.2005.I.009.

  • Stachniss, C., Plagemann, C., Lilienthal, A., & Burgard, W. (2008). Gas distribution modeling using sparse Gaussian process mixture models. In Proceedings of Robotics: Science and systems IV. Zurich, Switzerland. https://doi.org/10.15607/RSS.2008.IV.040.

  • Stein, M. (1999). Interpolation of spatial data: Some theory for kriging. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Surmann, H., Nüchter, A., & Hertzberg, J. (2003). An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments. Robotics and Autonomous Systems, 45(3), 181–198.

    Article  Google Scholar 

  • Thrun, S. (2003). Learning occupancy grid maps with forward sensor models. Autonomous Robots, 15(2), 111–127.

    Article  Google Scholar 

  • Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics (Vol. 1). Cambridge: MIT Press.

    MATH  Google Scholar 

  • Tresp, V. (2000). A Bayesian committee machine. Neural Computation, 12(11), 2719–2741.

    Article  Google Scholar 

  • Valencia, R., Valls Miro, J., Dissanayake, G., & Andrade-Cetto, J. (2012). Active Pose SLAM. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1885–1891).

  • Valencia, R., Morta, M., Andrade-Cetto, J., & Porta, J. M. (2013). Planning reliable paths with Pose SLAM. IEEE Transactions on Robotics, 29(4), 1050–1059.

    Article  Google Scholar 

  • Vallvé, J., & Andrade-Cetto, J. (2013). Mobile robot exploration with potential information fields. In 6th European conference on mobile robots.

  • Vallvé, J., & Andrade-Cetto, J. (2014). Dense entropy decrease estimation for mobile robot exploration. In Proceedings IEEE international conference on robotics and automation (pp. 6083–6089). IEEE.

  • Vallvé, J., & Andrade-Cetto, J. (2015). Potential information fields for mobile robot exploration. Robotics and Autonomous Systems, 69, 68–79.

    Article  Google Scholar 

  • Vasudevan, S., Ramos, F., Nettleton, E., & Durrant-Whyte, H. (2009). Gaussian process modeling of large-scale terrain. Journal of Field Robotics, 26(10), 812–840.

    Article  MATH  Google Scholar 

  • Wang, J., & Englot, B. (2016). Fast, accurate Gaussian process occupancy maps via test-data octrees and nested Bayesian fusion. In Proceedings IEEE international conference on robotics and automation (pp. 1003–1010).

  • Yamauchi, B. (1997). A frontier-based approach for autonomous exploration. In Int. sym. comput. intell. robot. automat. (pp. 146–151).

  • Yang, K., Keat Gan, S., & Sukkarieh, S. (2013). A Gaussian process-based RRT planner for the exploration of an unknown and cluttered environment with a UAV. Advanced Robotics, 27(6), 431–443.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maani Ghaffari Jadidi.

Additional information

This is one of the several papers published in Autonomous Robots comprising the Special Issue on Active Perception.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghaffari Jadidi, M., Valls Miro, J. & Dissanayake, G. Gaussian processes autonomous mapping and exploration for range-sensing mobile robots. Auton Robot 42, 273–290 (2018). https://doi.org/10.1007/s10514-017-9668-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-017-9668-3

Keywords

Navigation