Skip to main content

Advertisement

Log in

An accurate and efficient navigation system for omnidirectional robots in industrial environments

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Enhanced logistics is widely regarded as a key technology to increase flexibility and cost efficiency of today’s factories. For example, fully autonomous transport vehicles aim to gradually replace conveyor belts, guided vehicles, and manual labor. In this context, especially omnidirectional robots are appealing thanks to their advanced maneuvering capabilities. In industrial applications, however, accuracy as well as safety and efficiency are key requirements for successful navigation systems. In this paper, we present an accurate navigation system for omnidirectional robots. Our system includes dedicated modules for mapping, localization, trajectory generation and robot control. It has been designed for accurate execution by devising smooth, curvature continuous trajectories, by planning appropriate velocities and by accounting for platform and safety constraints. In this way, it completely utilizes the maneuvering capabilities of omnidirectional robots and optimizes trajectories with respect to time of travel. We present extensive experimental evaluations in simulation and in changing real-world environments to demonstrate the robustness and accuracy of our system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. Carmen robot navigation toolkit. http://carmen.sourceforge.net, 2014. Online, accessed 2014-11- 26.

  2. Frog AGV Systems. http://frog.nl, 2014. Online, accessed 2014-11-26.

  3. Swisslog. http://swisslog.com, 2014. Online, accessed 2014-11-26.

  4. Adept mobilerobots. http://mobilerobots.com, (2014). Online accessed 2014-11-26.

References

  • Balkcom, D. J., Kavathekar, P. A., & Mason, M. T. (2006). Time-optimal trajectories for an omni-directional vehicle. International Journal of Robotics Research (IJRR), 25(10), 985–999.

    Article  MATH  Google Scholar 

  • Bobrow, J. E., Dubowsky, S., & Gibson, J. (1985). Time-optimal control of robotic manipulators along specified paths. International Journal of Robotics Research (IJRR), 4(3), 3–17.

    Article  Google Scholar 

  • Brock, O., & Khatib, O. (2002). Elastic strips: A framework for motion generation in human environments. The International Journal of Robotics Research, 21(12), 1031–1052.

    Article  Google Scholar 

  • Byravan, A., Boots, B., Srinivasa, S., & Fox, D. (2014). Space-time functional gradient optimization for motion planning. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 6499–6506), May (2014). doi:10.1109/ICRA.2014.6907818.

  • Connors, J., & Elkaim, G. (2007). Manipulating B-Spline based paths for obstacle avoidance in autonomous ground vehicles. In National Meeting of the Institute of Navigation, San Diego, USA 2007.

  • Dellaert, F., & Kaess, M. (2006). Square root SAM: Simultaneous localization and mapping via square root information smoothing. International Journal of Robotics Research (IJRR), 25(12), 1181–1203.

    Article  MATH  Google Scholar 

  • Dellaert, F., Fox, D., Burgard, W., & Thrun, S. (1999). Monte Carlo Localization for mobile robots. In IEEE International Conference on Robotics and Automation (ICRA).

  • Foskey, M., Garber, M., Lin, M.C., & Manocha, D. (2001). A voronoi-based hybrid motion planner. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

  • Fox, D. (2003). Adapting the sample size in particle filters through KLD-sampling. Interntaional Journal of Robotics Research (IJRR), 22(12), 985–1003.

    Article  Google Scholar 

  • Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to collision avoidance. IEEE Robotics & Automation Magazine, 4(1), 23–33.

    Article  Google Scholar 

  • Fraichard, T., & Delsart, V. (2009). Navigating dynamic environments with trajectory deformation. Journal of Computing and Information Technology, 17, 27–36.

    Article  Google Scholar 

  • Grisetti, G., Kummerle, R., Stachniss, C., & Burgard, W. (2010). A tutorial on graph-based SLAM. IEEE Intelligent Transportation Systems Magazine, 2(4), 31–43.

    Article  Google Scholar 

  • Guizzo, E. (2008). Three engineers, hundreds of robots, one warehouse. IEEE Spectrum, 45(7), 26–34.

    Article  Google Scholar 

  • Hershberger, J., & Snoeyink, J. (1992). Speeding up the Douglas-Peucker line-simplification algorithm. Technical report, University of British Columbia.

  • Hornung, A., Phillips, M., Jones, E.G., Bennewitz, M., Likhachev, M., & Chitta, S. (2012). Navigation in three-dimensional cluttered environments for mobile manipulation. In IEEE Interntaional Conference on Robotics and Automation (ICRA).

  • Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., & Schaal, S. (2011). Stomp: Stochastic trajectory optimization for motion planning. In IEEE Interntaional Conference on Robotics and Automation (ICRA) (pp. 4569–4574) May 2011. doi:10.1109/ICRA.2011.5980280.

  • Kalmár-Nagy, T., D’Andrea, R., & Ganguly, P. (2004). Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle. Robotics and Autonomous Systems, 46(1), 47–64.

    Article  Google Scholar 

  • Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. International Journal of Robotics Research (IJRR), 30(7), 846–894.

    Article  MATH  Google Scholar 

  • Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., & Burgard, W. (2011). g2o: A general framework for graph optimization. In IEEE Interntaional Conference on Robotics and Automation (ICRA).

  • Kümmerle, R., Ruhnke, M., Steder, B., Stachniss, C., & Burgard, W. (2014). Autonomous robot navigation in highly populated pedestrian zones. Journal of Field Robotics, 32, 565–589.

    Article  Google Scholar 

  • Lamiraux, F., Bonnafous, D., & Lefebvre, O. (2004). Reactive path deformation for nonholonomic mobile robots. IEEE Transactions on Robotics, 20(6), 967–977.

    Article  Google Scholar 

  • Lau, B., Sprunk, C., & Burgard, W. (2009). Kinodynamic motion planning for mobile robots using splines. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

  • Lau, B., Sprunk, C., & Burgard, W. (2013). Efficient grid-based spatial representations for robot navigation in dynamic environments. Robotics and Autonomous Systems, 61(10), 1116–1130.

    Article  Google Scholar 

  • Likhachev, M., & Ferguson, D. (2009). Planning long dynamically feasible maneuvers for autonomous vehicles. International Journal of Robotics Research (IJRR), 28(8), 933–945.

    Article  Google Scholar 

  • Liu, Y., Zhu, J. J., Williams, R. L, I. I., & Wu, J. (2008). Omni-directional mobile robot controller based on trajectory linearization. Robotics and Autonomous Systems, 56(5), 461–479.

    Article  Google Scholar 

  • Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., & Konolige, K. (2010). The office marathon: Robust navigation in an indoor office environment. In IEEE Intlernational Conference on Robotics and Automation (ICRA).

  • Maček, K., Vasquez, G., Fraichard, T., & Siegwart, R. (2009). Towards safe vehicle navigation in dynamic urban scenarios. Automatika, 50(3–4), 184–194.

    Google Scholar 

  • Montemerlo, D., Roy, N., & Thrun, S. (2003). Perspectives on standardization in mobile robot programming: The Carnegie Mellon navigation (CARMEN) toolkit. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

  • Muir, P. (1988). Modeling and Control of Wheeled Mobile Robots. PhD thesis, Carnegie Mellon University, Pittsburgh, PA.

  • Olson, E. (2008). Robust and efficient robotic mapping. PhD thesis, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science.

  • Purwin, O., & D’Andrea, R. (2006). Trajectory generation and control for four wheeled omnidirectional vehicles. Robotics and Autonomous Systems, 54, 13–22.

    Article  Google Scholar 

  • Quinlan, S., & Khatib, O. (1993). Elastic bands: Connecting path planning and control. In IEEE Inernational Conference on Robotics and Automation (ICRA) (pp. 802–807).

  • Ratliff, N., Zucker, M., Bagnell, J.A., & Srinivasa, S. (2009). Chomp: Gradient optimization techniques for efficient motion planning. In IEEE Intl. Conference on Robotics and Automation (ICRA) (pp. 489–494).

  • Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In Interntaional Conference on Neural Networks.

  • Roewekaemper, J., Sprunk, C., Tipaldi, G.D., Stachniss, C., Pfaff, P., & Burgard, W.(2012). On the position accuracy of mobile robot localization based on particle filters combined with scan matching. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

  • Rojas, R., & Förster, A. G. (2006). Holonomic control of a robot with an omnidirectional drive. Künstliche Intelligenz, 20(2), 12–17.

    Google Scholar 

  • Rufli, M., Ferguson, D., Siegwart, R.: Smooth path planning in constrained environments. In IEEE Intl. Conference on Robotics and Automation (ICRA), (2009).

  • Schulman, J., Ho, J., Lee, A., Awwal, I., Bradlow, H., & Abbeel, P. (2013). Finding locally optimal, collision-free trajectories with sequential convex optimization. In Robotics: Science and Systems (Vol. 9, pp. 1–10).

  • Shin, K. G., & McKay, N. D. (1985). Minimum-time control of robotic manipulators with geometric path constraints. IEEE Transactions on Automatic Control, 30(6), 531–541.

    Article  MATH  Google Scholar 

  • Sprunk, C., Lau, B., Pfaff, P., & Burgard, W. (2011). Online generation of kinodynamic trajectories for non-circular omnidirectional robots. In IEEE International Conference on Robotics and Automation (ICRA).

  • Sprunk, C., Röwekämper, J., Parent, G., Spinello, L., Tipaldi, G. D., Burgard, W., et al. (2015). An experimental protocol for benchmarking robotic indoor navigation. In M. A. Hsieh, O. Khatib & V. Kumar (Eds.), Experimental Robotics, Springer Tracts in Advanced Robotics (Vol. 109, pp. 487–504). Springer International Publishing. doi:10.1007/978-3-319-23778-7_32.

  • Şucan, I. A., Moll, M., & Kavraki, L. E. (2012). The Open Motion Planning Library. IEEE Robotics & Automation Magazine, 19(4), 72–82 http://ompl.kavrakilab.org.

  • Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 128(1), 99–141.

    Article  MATH  Google Scholar 

  • Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., et al. (2006). Stanley: The robot that won the darpa grand challenge. Journal of Field Robotics, 23(9), 661–692.

    Article  Google Scholar 

  • Tipaldi, G.D., Spinello, L., & Burgard, W. (2013). Geometrical flirt phrases for large scale place recognition in 2d range data. In IEEE Interntaional Conference on Robotics and Automation (ICRA).

  • Tipaldi, G. D., Braun, M., & Arras, K. O. (2014). Flirt: Interest regions for 2d range data with applications to robot navigation. Experimental Robotics (pp. 695–710). Berlin: Springer.

    Chapter  Google Scholar 

  • Tomatis, N. (2011). Bluebotics: Navigation for the clever robot [Entrepreneur]. IEEE Robotics Automation Magazine, 18(2), 14–16.

    Article  Google Scholar 

  • Watanabe, K. (1998). Control of an omnidirectional mobile robot. In Proceedings of International Conference on Knowledge-Based Intelligent Electronic Systems.

  • Werling, M., & Gröll, L. (2008). Low-level controllers realizing high-level decisions in an autonomous vehicle. In IEEE Intelligent Vehicles Symposium.

  • Wurman, P. R., D’Andrea, R., & Mountz, M. (2008). Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Magazine, 29(1), 9.

    Google Scholar 

  • Yang, Y., & Brock, O. (2010). Elastic roadmaps-motion generation for autonomous mobile manipulation. Autonomous Robots, 28(1), 113–130.

    Article  Google Scholar 

  • Ziegler, J., & Stiller, C. (2009). Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

  • Ziegler, J., Werling, M., Schröder, J. (2008). Navigating car-like robots in unstructured environments using an obstacle sensitive cost function. In IEEE Intelligent Vehicles Symposium (IV 08).

Download references

Acknowledgments

This work has partly been supported by the European Commission under Grant Agreement Numbers FP7-248258-First-MM, FP7-260026-TAPAS, and FP7-248873-RADHAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Sprunk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sprunk, C., Lau, B., Pfaff, P. et al. An accurate and efficient navigation system for omnidirectional robots in industrial environments. Auton Robot 41, 473–493 (2017). https://doi.org/10.1007/s10514-016-9557-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-016-9557-1

Keywords

Navigation