Skip to main content

Advertisement

Log in

Mid-water current aided localization for autonomous underwater vehicles

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Survey-class autonomous underwater vehicles (AUVs) typically rely on Doppler Velocity Logs (DVL) for precision localization near the seafloor. In cases where the seafloor depth is greater than the DVL bottom-lock range, localizing between the surface and the seafloor presents a localization problem since both GPS and DVL observations are unavailable in the mid-water column. This work proposes a solution to this problem that exploits the fact that current profile layers of the water column are near constant over short time scales (in the scale of minutes). Using observations of these currents obtained with the Acoustic Doppler Current Profiler mode of the DVL during descent, along with data from other sensors, the method discussed herein constrains position error. The method is validated using field data from the Sirius AUV coupled with view-based Simultaneous Localization and Mapping (SLAM) and on descents up to 3km deep with the Sentry AUV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. 09/19/2009 email from Teledyne RD Instruments.

References

  • Atkinson, C. (2008). Analysis of shipboard ADCP data from RRS Discovery Cruise D324: RAPID Array Eastern Boundary. Technical report: National Oceanography Centre Southampton.

  • Brokloff, N. (1994). Matrix algorithm for Doppler sonar navigation. Brest, France, 2, 378–83.

    Google Scholar 

  • Brokloff, N. (1997). Dead reckoning with an ADCP and current extrapolation. In OCEANS 1997. MTS/IEEE conference proceedings (vol 2, pp. 994–1000)

  • Brumley, B. H., Cabrera, R. G., Deines, K. L., & Terray, E. A. (1991). Performance of a broad-band acoustic Doppler current profiler. IEEE Journal of Oceanic Engineering, 16(4), 402–407.

    Article  Google Scholar 

  • Camilli, R., Reddy, C., Yoerger, D., Van Mooy, B., Jakuba, M., Kinsey, J., et al. (2010). Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science, 330(6001), 201–204.

    Article  Google Scholar 

  • Caress, D. W., Clague, D. A., Paduan, J. B., Martin, J. F., Dreyer, B. M., Chadwick, W. W, Jr., et al. (2012). Repeat bathymetric surveys at 1-metre resolution of lava flows erupted at Axial Seamount in April 2011. Nature Geoscience, 5(7), 483–488. doi:10.1038/ngeo1496.

    Article  Google Scholar 

  • Crees, T., Kaminski, C., Ferguson, J., Laframboise, J., Forrest, A., Williams, J., MacNeil, E., Hopkin, D., & Pederson, R. (2010). UNCLOS under ice survey—A historic AUV deployment in the Canadian high Arctic. In: IEEE/MTS Oceans (pp. 1–8)

  • Flenniken, I. V. W. (2005). Modeling inertial measurement units and analyzing the effect of their errors in navigation applications. Masters Thesis, Auburn University.

  • Fossen, T. (1994). Guidance and control of ocean vehicles. New York: Wiley.

    Google Scholar 

  • Furlong, M. E., Paxton, D., Stevenson, P., Pebody, M., McPhail, S. D., & Perrett, J. (2012). Autosub long range: A long range deep diving AUV for ocean monitoring. In Autonomous underwater vehicles (AUV), 2012 IEEE/OES (pp. 1–7).

  • German, C., Yoerger, D., Jakuba, M., Shank, T., Langmuir, C., & Nakamura, K. (2008). Hydrothermal exploration with the autonomous Benthic explorer. In Deep-sea research part I-oceanographic research papers (vol. 55(2), pp. 203–219). doi:10.1016/j.dsr.2007.11.004.

  • Gordon, R. (1996). Principles of operation a practical primer. San Diego: RD Instruments.

    Google Scholar 

  • Healey, A., Rock, S., Cody, S., Miles, D., & Brown, J. (1995). Toward an improved understanding of thruster dynamics for underwater vehicles. IEEE Journal of Oceanic Engineering, 20(4), 354–361.

    Article  Google Scholar 

  • Hegrenaes, O., & Berglund, E. (2009). Doppler water-track aided inertial navigation for autonomous underwater vehicle. In OCEANS 2009-EUROPE, 2009. OCEANS’09 (pp. 1–100). doi:10.1109/OCEANSE.2009.5278307.

  • Hegrenaes, O., & Hallingstad, O. (2011). Model-aided INS with sea current estimation for robust underwater navigation. IEEE Journal of Oceanic Engineering, 36(2), 316–337.

    Article  Google Scholar 

  • Hobson, B. W., Bellingham, J. G., Kieft, B., McEwen, R., Godin, M., & Zhang, Y. (2012). Tethys-class long range AUVs—extending the endurance of propeller-driven cruising AUVs from days to weeks. In 2012 IEEE/OES autonomous underwater vehicles (AUV) (pp. 1–8).

  • Hunt, M. M., Marquet, W. M., Moller, D. A., Peal, K. R., Smith, W. K., & Spindell, R. C. (1974). An acoustic navigation system. Technical report WHOI-74-6, Woods Hole Oceanographic Institution, Woods Hole, MA.

  • iXSea (Accessed 22–03-2012) PHINS brochure.

  • Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., & Dellaert, F. (2011). isam2: Incremental smoothing and mapping with fluid relinearization and incremental variable reordering. In IEEE international conference on robotics and automation, IEEE (pp. 3281–3288).

  • Kelley, D. S., Karson, J. A., Früh-Green, G. L., Yoerger, D. R., Shank, T. M., Butterfield, D. A., et al. (2005). A serpentinite-hosted ecosystem: The Lost City hydrothermal field. Science, 307(5714), 1428–1434.

    Article  Google Scholar 

  • Kinsey, J. C., & Whitcomb, L. L. (2004). Preliminary field experience with the DVLNAV integrated navigation system for oceanographic submersibles. Control Engineering Practice, 12(12), 1541–1548. invited Paper.

    Article  Google Scholar 

  • Kinsey, J. C., Eustice, R. M., & Whitcomb, L. L. (2006). A survey of underwater vehicle navigation: Recent advances and new challenges. In IFAC conference of manoeuvering and control of marine craft

  • Kinsey, J. C., Yoerger, D. R., Jakuba, M. V., Camilli, R., Fisher, C. R., & German, C. R. (2011). Assessing the deepwater Horizon oil spill with the Sentry autonomous underwater vehicle. In IEEE/RSJ international conference on intelligent robots and systems (IROS), 2011, IEEE (pp. 261–267).

  • Kinsey, J. C., Yang, Q., & Howland, J. C. (2014). Nonlinear dynamic model-based state estimators for underwater navigation of remotely operated vehicles. IEEE Transactions on Control Systems Technology, 99, 1–1.

    Google Scholar 

  • Lupton, T. (2010). Inertial slam with delayed initialisation. PhD Thesis, University of Sydney.

  • Lupton, T., & Sukkarieh, S. (2009). Efficient integration of inertial observations into visual SLAM without initialization. In IEEE/RSJ international conference on intelligent robots and systems (pp. 1547–1552). doi:10.1109/IROS.2009.5354267.

  • Mahon, I., Williams, S., Pizarro, O., & Johnson-Roberson, M. (2008). Efficient view-based SLAM using visual loop closures. IEEE Transactions on Robotics, 24(5), 1002–1014. doi:10.1109/TRO.2008.2004888.

    Article  Google Scholar 

  • Martin, S., & Whitcomb, L. (2008). Preliminary results in experimental identification of 3-dof coupled dynamical plant for underwater vehicles. In OCEANS 2008, IEEE (pp. 1–9).

  • McPhail, S. D., & Pebody, M. (2009). Range-only positioning of a deep-diving autonomous underwater vehicle from a surface ship. IEEE Journal of Oceanic Engineering, 34(4), 669–677.

    Article  Google Scholar 

  • Medagoda, L., Jakuba, M. V., Pizarro, P., & Williams, W. (2010). Water column current profile aided localisation for autonomous underwater vehicles. In OCEANS 2010. Sydney: IEEE.

  • Medagoda, L., Williams, S. B., Pizarro , O., & Jakuba, M. V. (2011). Water column current profile aided localisation combined with view-based SLAM for autonomous underwater vehicles. In International conference on robotics and automation 2011, IEEE, Shanghai.

  • Medagoda, L., Eilders, M., & Kinsey, J. (2015). Autonomous underwater vehicle navigation in a spatiotemporally varying water current field. In IEEE international conference on robotics and automation (pp. 565–572).

  • Napolitano, F. (2004). PHINS: THE AUTONOMOUS NAVIGATION SOLUTION. Sea Technology

  • Nicholls, K., Abrahamsen, E., Buck, J., Dodd, P., Goldblatt, C., Griffiths, G., et al. (2006). Measurements beneath an Antarctic ice shelf using an autonomous underwater vehicle. Geophysical Research Letters, 33(8), doi:10.1029/2006GL025998.

  • Paull, L., Saeedi, S., Seto, M., & Li, H. (2014). AUV navigation and localization: A review. IEEE Journal of Oceanic Engineering

  • Peyronnet, J. P., Person, R., & Rybicki, F. (1998). POSIDONIA 6000—a new long range highly accurate ultra short base line positioning system. Nice, France, 3, 1721–1727. doi:10.1109/OCEANS.1998.726382.

    Google Scholar 

  • Schofield, O., Ducklow, H. W., Martinson, D. G., Meredith, M. P., Moline, M. A., & Fraser, W. R. (2010). How do polar marine ecosystems respond to rapid climate change? Science, 328(5985), 1520–1523.

    Article  Google Scholar 

  • Shih, H., Payton, C., Sprenke, J., & Mero, T. (2000). Towing basin speed calibration of acoustic Doppler current profiling instruments. In Joint conference on water resources engineering and water resources planning and management, American Society of Civil Engineers.

  • Singh, H., Armstrong, R., Gilbes, F., Eustice, R., Roman, C., Pizarro, O., et al. (2004a). Imaging coral I: Imaging coral habitats with the seabed AUV. Subsurface Sensing Technologies and Applications, 5(1), 25–42.

    Article  Google Scholar 

  • Singh, H., Can, A., Eustice, R., Lerner, S., McPhee, N., Pizarro, O., et al. (2004b). Seabed AUV offers new platform for high-resolution imaging. EOS Transactions of the AGU, 85(31), 289–294.

    Article  Google Scholar 

  • Soon, B., Scheding, S., Lee, H., Lee, H., & Durrant-Whyte, H. (2008). An approach to aid INS using time-differenced GPS carrier phase (TDCP) measurements. Gps Solutions, 12(4), 261–271.

    Article  Google Scholar 

  • Stanway, M. (2011). Dead reckoning through the water column with an acoustic Doppler current profiler: Field experiences. In OCEANS 2011, IEEE (pp. 1–8).

  • Stanway, M. (2012). Contributions to automated realtime underwater navigation. PhD Thesis, Massachusetts Institute of Technology.

  • Titterton, D., & Weston, J. (2004). Strapdown inertial navigation technology. London: Peter Peregrinus Ltd.

    Book  Google Scholar 

  • Tivey, M. A., Johnson, H. P., Bradley, A. M., & Yoerger, D. R. (1998). Thickness of a submarine lava flow determined from near-bottom magnetic field mapping by autonomous underwater vehicle. Geophysical Research Letters, 25(6), 805–808.

    Article  Google Scholar 

  • Todd, R. E., Rudnick, D. L., Mazloff, M. R., Davis, R. E., & Cornuelle, B. D. (2011). Poleward flows in the southern california current system: Glider observations and numerical simulation. Journal of Geophysical Research: Oceans (1978–2012) 116(C2).

  • van Graas, F., & Soloviev, A. (2004). Precise velocity estimation using a stand-alone GPS receiver. Navigation (Washington, DC), 51(4), 283–292.

    Google Scholar 

  • Visbeck, M. (2002). Deep velocity profiling using lowered acoustic Doppler current profilers: Bottom track and inverse solutions. Journal of Atmospheric and Oceanic Technology, 19(5), 794–807.

    Article  Google Scholar 

  • Walter, M., Eustice, R., & Leonard, J. (2007). Exactly sparse extended information filters for feature-based SLAM. The International Journal of Robotics Research, 26(4), 335–359.

    Article  Google Scholar 

  • Whitcomb, L. L., Yoerger, D. R., Singh, H., & Howland, J. (1999). Combined Doppler/LBL based navigation of underwater vehicles. In Proceedings of the the 11th international symposium on unmanned untethered submersible technology, Durham, NH.

  • Williams, S., Pizarro, O., Mahon, I., & Johnson-Roberson, M. (2009). Simultaneous localisation and mapping and dense stereoscopic seafloor reconstruction using an AUV. In Experimental robotics. Berlin: Springer, (pp. 407–416).

  • Williams, S., Pizarro, O., Webster, J., Beaman, R., Mahon, I., Johnson-Roberson, M., et al. (2010). Autonomous underwater vehicle-assisted surveying of drowned reefs on the shelf edge of the Great Barrier Reef. Australia. Journal of Field Robotics, 27(5), 675–697.

    Article  Google Scholar 

  • Williams, S., Pizarro, O., Jakuba, M., Johnson, C., Barrett, N., Babcock, R., et al. (2012). Monitoring of benthic reference sites: Using an autonomous underwater vehicle. IEEE Robotics Automation Magazine, 19(1), 73–84. doi:10.1109/MRA.2011.2181772.

    Article  Google Scholar 

  • Yoerger, D., Jakuba, M., Bradley, A., & Bingham, B. (2007). Techniques for deep sea near bottom survey using an autonomous underwater vehicle. International Journal of Robotics Research, 26(1), 41–54.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported in part by NCRIS IMOS, the Australian Research Council (ARC), the New South Wales Government and the Woods Hole Oceanographic Institution. Sirius AUV data was obtained on cruises supported by the University of Tasmania and the IMOS AUV Facility program. We thank the cruise PIs (N. Barrett and C. Johnson), the officers and crew of the R/V Challenger and the Sirius operations team (D. Mercer and G. Powell). Deep water data was obtained on cruises AT26-09 (PIs: G. Wheat, A. Fisher, and S. Hulme) and AT26-17 (PIs: J. Kinsey, T. Crone, and E. Mittelsteadt) through funding from National Science Foundation. We thank the officers and crew of the R/V Atlantis and the Sentry operations team (Z. Berkowitz, A. Duester, J. Fujii, J. Hansen, M. Loebecker, S. Suman) for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lashika Medagoda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medagoda, L., Williams, S.B., Pizarro, O. et al. Mid-water current aided localization for autonomous underwater vehicles. Auton Robot 40, 1207–1227 (2016). https://doi.org/10.1007/s10514-016-9547-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-016-9547-3

Keywords

Navigation