Skip to main content
Log in

Time-variant gas distribution mapping with obstacle information

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper addresses the problem of estimating the spatial distribution of volatile substances using a mobile robot equipped with an electronic nose. Our work contributes an effective solution to two important problems that have been disregarded so far: First, obstacles in the environment (walls, furniture,...) do affect the gas spatial distribution. Second, when combining odor measurements taken at different instants of time, their ‘ages’ must be taken into account to model the ephemeral nature of gas distributions. In order to incorporate these two characteristics into the mapping process we propose modeling the spatial distribution of gases as a Gaussian Markov random field. This mathematical framework allows us to consider both: (i) the vanishing information of gas readings by means of a time-increasing uncertainty in sensor measurements, and (ii) the influence of objects in the environment by means of correlations among the different areas. Experimental validation is provided with both, simulated and real-world datasets, demonstrating the out-performance of our method when compared to previous standard techniques in gas mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. An exception to this is the tunable laser absorption spectroscopy (TDLAS) technology (Trincavelli et al. 2012; Frish et al. 2005), which provides integral gas concentration measurements over the path of a laser beam. However, this is still an emerging technology with important drawbacks for robotic applications, including cost, weight and power consumption.

  2. Model ppbRAE2000 from RAESystem, with a 10.6 eV UV lamp.

References

  • Airsense Analytics. (2014). The portable electronic nose-PEN3. http://www.airsense.com/en/products/portable-electronic-nose.

  • Asadi, S., Pashami, S., Loutfi, A., & Lilienthal, A. J. (2011). TD Kernel DM+V: Time-dependent statistical gas distribution modelling on simulated measurements. In Proceedings of the 14th International Symposium on Olfaction and Electronic Nose (ISOEN), (Vol. 1362, pp. 281–283).

  • Bishop, C. M. (2007). Pattern recognition and machine learning. Berlin: Springer.

    Google Scholar 

  • Bjorck, A. (1996). Numerical methods for least squares problems. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  • Blanco, J. L., Gonzalez-Jimenez, J., & Fernandez-Madrigal, J. A. (2010). Optimal filtering for non-parametric observation models: Applications to localization and SLAM. The International Journal of Robotics Research, 29(14), 1726–1742. doi:10.1177/0278364910364165.

    Article  Google Scholar 

  • Blanco, J. L., G. Monroy, J., Gonzalez-Jimenez, J., & Lilienthal, A. J. (2013). A kalman filter based approach to probabilistic gas distribution mapping. In 28th Symposium On Applied Computing (SAC) (pp. 217–222). doi:10.1145/2480362.2480409.

  • Clifford, P. (1990). Markov random fields in statistics. In G. Grimmett & D. Welsh (Eds.), Disorder in physical systems: A volume in honour of John M. Hammersley (pp. 19–32). Oxford University Press.

  • Davis, T. A. (2004). A column pre-ordering strategy for the unsymmetric-pattern multifrontal method. ACM Transactions on Mathematical Software, 30(2), 165–195. doi:10.1145/992200.992205.

    Article  MATH  Google Scholar 

  • Dellaert, F., & Kaess, M. (2006). Square root SAM: Simultaneous localization and mapping via square root information smoothing. The International Journal of Robotics Research, 25(12), 1181–1203.

    Article  MATH  Google Scholar 

  • Dennis, J. E., & Schnabel, R. B. (1996). Numerical methods for unconstrained optimization and nonlinear equations. Society for Industrial and Applied Mathematics. doi:10.1137/1.9781611971200.

  • Fenger, J. (1999). Urban air quality—their physical and chemical characteristics. Atmospheric Environment, 33(29), 4877–4900. doi:10.1016/S1352-2310(99)00290-3.

    Article  Google Scholar 

  • Fernandez-Madrigal, J. A., & Blanco, J. L. (2013). Simultaneous localization and mapping for mobile robots: Introduction and methods. Hershey: Information Science Reference.

    Book  Google Scholar 

  • Frish, M.B., Wainner, R. T., Green, B. D., Laderer, M. C., & Allen, M. G. (2005). Standoff gas leak detectors based on tunable diode laser absorption spectroscopy. In Proceedings of SPIE 6010, Infrared to Terahertz Technologies for Health and the Environment. doi:10.1117/12.630599.

  • G. Monroy, J., Gonzalez-Jimenez, J., & Blanco, J. L. (2012). Overcoming the slow recovery of MOX gas sensors through a system modeling approach. Sensors, 12(10), 13664–13680. doi:10.3390/s121013664.

  • G. Monroy, J., Blanco, J. L., & González-Jiménez, J. (2013). An open source framework for simulating mobile robotics olfaction. In Proceedings of the 15th International Symposium On Olfaction and Electronic Nose (ISOEN).

  • Golub, G. H., & Plemmons, R. J. (1980). Large-scale geodetic least-squares adjustment by dissection and orthogonal decomposition. Linear Algebra and its Applications, 34, 3–28. doi:10.1016/0024-3795(80)90156-1.

    Article  MathSciNet  MATH  Google Scholar 

  • Gonzalez-Jimenez, J., G. Monroy, J., & Blanco, J. L. (2011). The multi-chamber electronic nose. An improved olfaction sensor for mobile robotics. Sensors, 11(6), 6145–6164. doi:10.3390/s110606145.

  • Ishida, H., Ushiku, T., Toyama, S., Taniguchi, H., & Moriizumi, T. (2005). Mobile robot path planning using vision and olfaction to search for a gas source. In IEEE Sensors. doi:10.1109/ICSENS.2005.1597899.

  • Lilienthal, A. J., & Duckett, T. (2004). Building gas concentration gridmaps with a mobile robot. Robotics and Autonomous Systems, 48(1), 3–16.

    Article  Google Scholar 

  • Lilienthal, A. J., Loutfi, A., Blanco, J. L., Galindo, C., & Gonzalez-Jimenez, J. (2007). A rao-blackwellisation approach to GDM-SLAM: Integrating SLAM and gas distribution mapping (GDM). In 3rd European Conference on Mobile Robots (ECMR).

  • Lilienthal, A. J., Reggente, M., Trincavelli, M., Blanco, J. L., & Gonzalez-Jimenez, J. (2009). A statistical approach to gas distribution modelling with mobile robots—the kernel DM+V algorithm. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS. (pp. 570–576). doi:10.1109/IROS.2009.5354304.

  • Loeliger, H. A. (2004). An introduction to factor graphs. IEEE Signal Processing Magazine, 21(1), 28–41. doi:10.1109/MSP.2004.1267047.

    Article  Google Scholar 

  • Loufti, A., Coradeschi, S., Lilienthal, A. J., & Gonzalez-Jimenez, J. (2009). Gas distribution mapping of multiple odour sources using a mobile robot. Robotica, 27, 311–319. doi:10.1017/S0263574708004694.

    Article  Google Scholar 

  • Madsen, K., Nielsen, H. B., & Tingleff, O. (2004). Methods for non-linear least squares problems (2nd ed.).

  • Marjovi, A., & Marques, L. (2013). Optimal spatial formation of swarm robotic gas sensors in odor plume finding. Autonomous Robots, 35(2–3), 93–109. doi:10.1007/s10514-013-9336-1.

  • MobileRobots Inc. (2014). Corporate website. http://www.mobilerobots.com

  • Pashami, S., Asadi, S., & Lilienthal, A. J. (2010). Integration of openfoam flow simulation and filament-based gas propagation models for gas dispersion simulation. In Proceedings of the Open Source CFD International Conference.

  • Reggente, M., & Lilienthal, A. J. (2009). Three-dimensional statistical gas distribution mapping in an uncontrolled indoor environment. In Proceedings of the 13th International Symposium on Olfaction and Electronic Nose (ISOEN) (Vol. 1137, pp. 109–112).

  • Sanchez-Garrido, C., Monroy, J. G., Gonzalez-Jimenez J. (2014). A configurable smart e-nose for spatio-temporal olfactory analysis. IEEE Sensors (pp. 1968–1971). Spain:Valencia. doi:10.1109/ICSENS.2014.6985418.

  • Sensigent Intelligent Sensing Solutions. (2014). Cyranose 320. http://www.sensigent.com/products/cyranose.html

  • Shraiman, B. I., & Siggia, E. D. (2000). Scalar turbulence. Nature, 405, 639–646. doi:10.1038/35015000.

    Article  Google Scholar 

  • Stachniss, C., Plagemann, C., & Lilienthal, A. J. (2009). Gas distribution modeling using sparse gaussian process mixtures. Autonomous Robots, 26(2–3), 187–202.

    Article  Google Scholar 

  • Tauseef, S., Rashtchian, D., & Abbasi, S. (2011). CFD-based simulation of dense gas dispersion in presence of obstacles. Journal of Loss Prevention in the Process Industries, 24(4), 371–376. doi:10.1016/j.jlp.2011.01.014.

    Article  Google Scholar 

  • Trincavelli, M., Hernandez Bennetts, V., & Lilienthal, A. J. (2012). A least squares approach for learning gas distribution maps from a set of integral gas concentration measurements obtained with a TDLAS sensor. In IEEE Sensors (pp 1–4). doi:10.1109/ICSENS.2012.6411118.

  • Tsujita, W., Yoshino, A., Ishida, H., & Moriizumi, T. (2005). Gas sensor network for air-pollution monitoring. Sensors and Actuators B: Chemical, 110(2), 304–311. doi:10.1016/j.snb.2005.02.008.

    Article  Google Scholar 

  • Turduev, M., Cabrita, G., Kırtay, M., Gazi, V., & Marques, L. (2014). Experimental studies on chemical concentration map building by a multi-robot system using bio-inspired algorithms. Autonomous Agents and Multi-Agent Systems, 28(1), 72–100. doi:10.1007/s10458-012-9213-x.

    Article  Google Scholar 

  • Winkler, G. (2003). Image analysis, random fields and Markov chain Monte Carlo methods: A mathematical introduction (Vol. 27). Berlin: Springer.

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Achim J. Lilienthal and Sahar Asadi for the fruitful discussions about kernel methods for gas distribution mapping. This work was supported by the Andalucía Regional Government and the European Union (FEDER) [TEP08-4016]; and by the Spanish “Ministerio de Ciencia e Innovación” and the grant program JDC-MICINN 2011 [DPI2011-25483].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier G. Monroy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

G. Monroy, J., Blanco, JL. & Gonzalez-Jimenez, J. Time-variant gas distribution mapping with obstacle information. Auton Robot 40, 1–16 (2016). https://doi.org/10.1007/s10514-015-9437-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9437-0

Keywords

Navigation