Skip to main content
Log in

Force feedback exploiting tactile and proximal force/torque sensing

Theory and implementation on the humanoid robot iCub

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

The paper addresses the problem of measuring whole-body dynamics for a multiple-branch kinematic chain in presence of unknown external wrenches. The main result of the paper is to give a methodology for computing whole body dynamics by aligning a model of the system dynamics with the measurements coming from the available sensors. Three primary sources of information are exploited: (1) embedded force/torque sensors, (2) embedded inertial sensors, (3) distributed tactile sensors (i.e. artificial skin). In order to cope with external wrenches applied at continuously changing locations, we model the kinematic chain with a graph which dynamically adapts to the contact locations. Classical pre-order and post-order traversals of this dynamically evolving graph allow computing whole-body dynamics and estimate external wrenches. Theoretical results have been implemented in an open-source software library (iDyn) released under the iCub project. Experimental results on the iCub humanoid robot show the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Algorithm 2
Fig. 7
Algorithm 3
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Internal wrenches are of particular interest because their projection on the joints can be used to estimate joint torques (Sciavicco and Siciliano 2005).

  2. Given a force f∈ℝ3 and a moment μ∈ℝ3, a wrench w∈ℝ6 is the vector . Force/torque sensors, which actually measure a wrench, are named according to the physics terminology, where μ is called torque. In this paper, to discriminate from the joint torque τ, we call μ moment according to the mechanical terminology.

  3. The method we will present in next sections is not strictly dependent on the notation and algorithms employed for the computations. Custom choices can also be adopted.

  4. The method can be easily generalized for revolutionary and linear joints.

  5. Within this context, a crucial role is played by the distributed tactile sensor, primarily used to compute the presence and the location of externally applied wrenches. Even if the tactile sensor would be capable of measuring also the component of the force normal to the skin surface, this information is not used in this paper where we focus on computing both the applied force and torque (i.e. the whole externally applied wrench) exploiting the embedded sensors.

  6. According to our kinematic convention an edge e i,j is fixed on the i-th link. Therefore a sensor fixed in the i-th link, will be represented by e i,s , i.e. an edge from the link to the sensor.

  7. In the classical recursive kinematic computation (Sciavicco and Siciliano 2005) there is a one-to-one correspondence between links and joints (see Fig. 1) thus resulting in a set of kinematic equations slightly different from the ones of Eq. (1). Classically, the i-th link has two joints and associated reference frames 〈i〉 and 〈i−1〉, respectively. Only 〈i〉 is attached to the i-th link while 〈i−1〉 is attached to the link i−1. The rotation between these two links is around the z-axis of 〈i−1〉 by an angle which is denoted by θ i and therefore the analogous of Eq. (1) in Sciavicco and Siciliano (2005) refer to \(\dot{\theta}_{i}\) in place of \(\dot{\theta}_{j}\) and z i−1 in place of z i . In our notation, we get rid of this common labeling for joints and links by explicitly distinguishing the link represented with the node v and the attached joints represented with the edges i, j, … and associated frames 〈i〉, 〈j〉, … whose axes are therefore z i , z j , … with associated angles θ i , θ j .

  8. With slight abuse of notation we indicated with \(r_{\star, C_{v}}\) the vector connecting the generic frame 〈⋆〉 to the one placed on the center of mass C v of the v-th link.

  9. Kinematic chains are often grounded and therefore there exists a base link with null angular kinematics, ω=[0,0,0], \(\dot{\omega}=[0, 0, 0]^{\top}\) and gravitational linear acceleration \(\ddot{p}=g\), being g the vector representing the gravity force. This situation is mathematically equivalent to an inertial sensor attached to the base link and measuring constantly ω=0, \(\dot{\omega}=0\) and \(\ddot{p}= g\).

  10. See also Remark 2.

  11. pre- and post-order refer to different classical graph visiting algorithms (Cormen et al. 2002).

  12. Practically, these equations can be obtained by defining an arbitrary ◊ connected to an arbitrary node. A post-order traversal of the graph with ◊ as root determines the equations by simply assuming that the wrench associated to the edge connected to ◊ is null.

  13. Moreover, this is not the only information that it is possible to extract from the method. Joint torques are here found as one component of the wrenches flowing through the edges. These wrenches allow having a better representation of the possible contact situation, which can be used as a virtual measurement, to perform every kind of tasks involving force detection and control.

  14. The description of the iCub kinematics can be found online (iCub Project 2011).

  15. Each vertex is named as Xk, where X={H, LA, RA, RL,LL, T} is a code for the limb (head, torso, right/left arm/leg) and k means that the corresponding link is the k-th for that specific limb.

  16. This application also highlights the importance of the inertial sensor, which allows performing the Newton-Euler computations without a fixed base frame (as it is usually assumed in its classical applications).

References

  • Caccavale, F., Natale, C., Siciliano, B., & Villani, L. (2005). Integration for the next generation: embedding force control into industrial robots. IEEE Robotics & Automation Magazine, 12(3), 53–64.

    Article  Google Scholar 

  • Calinon, S., Sardellitti, I., & Caldwell, D. (2010). Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies. In IEEE/RSJ int. conf. on intelligent robots and systems, Taipei, Taiwan.

    Google Scholar 

  • Cannata, G., Maggiali, M., Metta, G., & Sandini, G. (2008). An embedded artificial skin for humanoid robots. In IEEE int. conf. on multisensor fusion and integration, Seoul, Korea.

    Google Scholar 

  • Chiaverini, S., Siciliano, B., & Villani, L. (1999). A survey of robot interaction control schemes with experimental comparison. IEEE/ASME Transactions on Mechatronics, 4(3), 273–285.

    Article  Google Scholar 

  • Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2002). Introduction to algorithms (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Degallier, S., Righetti, L., Natale, L., Nori, F., Metta, G., & Ijspeert, A. (2008). A modular bio-inspired architecture for movement generation for the infant-like robot icub. In IEEE RAS/EMBS int. conf. on biomedical robotics and biomechatronics, Scottsdale, Arizona.

    Google Scholar 

  • Eiberger, O., Haddadin, S., Weis, M., Albu-Schäffer, A., & Hirzinger, G. (2010). On joint design with intrinsic variable compliance: derivation of the DLR QA-joint. In IEEE int. conf. on robotics and automation (pp. 1687–1694).

    Chapter  Google Scholar 

  • Featherstone, R. (2007). Rigid body dynamics algorithms. New York: Springer.

    Google Scholar 

  • Featherstone, R. (2010). Exploiting sparsity in operational-space dynamics. The International Journal of Robotics Research, 29, 1353–1368.

    Article  Google Scholar 

  • Featherstone, R., & Orin, D. E. (2008). Dynamics. In B. Siciliano & O. Khatib (Eds.), Handbook of robotics (pp. 35–65). Berlin: Springer.

    Chapter  Google Scholar 

  • Fitzpatrick, P., Metta, G., & Natale, L. (2008). Towards long-lived robot genes. Robotics and Autonomous Systems, 56, 29–45.

    Article  Google Scholar 

  • Fitzpatrick, P., Natale, L., & Metta, G. (2010). The Cmaking of a humanoid. The Kitware Source: Software Developer’s Quarterly, 13, 7–9.

    Google Scholar 

  • Fumagalli, M., Gijsberts, A., Ivaldi, S., Jamone, L., Metta, G., Natale, L., Nori, F., & Sandini, G. (2010a). Learning to exploit proximal force sensing: a comparison approach. In O. Sigaud & J. Peters (Eds.), From motor learning to interaction learning in robots (pp. 149–167). Berlin: Springer.

    Chapter  Google Scholar 

  • Fumagalli, M., Randazzo, M., Nori, F., Natale, L., Metta, G., & Sandini, G. (2010b). Exploiting proximal F/T measurements for the iCub active compliance. In IEEE/RSJ int. conf. on intelligent robots and systems, Taipei, Taiwan.

    Google Scholar 

  • Haddadin, S., Albu-Schäffer, A., Frommberger, M., & Hirzinger, G. (2008a). The role of the robot mass and velocity in physical human-robot interaction—part II: Constrained blunt impacts. In IEEE int. conf. on robotics and automation, Pasadena, CA, USA.

    Google Scholar 

  • Haddadin, S., Albu-Schäffer, A., & Hirzinger, G. (2008b). The role of the robot mass and velocity in physical human-robot interaction—part I: Non-constrained blunt impacts. In IEEE int. conf. on robotics and automation, Pasadena, CA, USA.

    Google Scholar 

  • Haddadin, S., Albu-Schaffer, A., Eiberger, O., & Hirzinger, G. (2010a). New insights concerning intrinsic joint elasticity for safety. In IEEE/RSJ int. conf. on intelligent robots and systems.

    Google Scholar 

  • Haddadin, S., Urbanek, H., Parusel, S., Burschka, D., Rossmann, J., Albu-Schaffer, A., & Hirzinger, G. (2010b). Real-time reactive motion generation based on variable attractor dynamics and shaped velocities. In 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3109–3116).

    Chapter  Google Scholar 

  • iCub Project, T. (2011). Documentation of icub kinematics. http://eris.liralab.it/wiki/ICubForwardKinematics.

  • Ivaldi, S., Fumagalli, M., Randazzo, M., Nori, F., Metta, G., & Sandini, G. (2011). Computing robot internal/external wrenches by means of inertial, tactile and F/T sensors: theory and implementation on the iCub. In IEEE-RAS int. conf. humanoid robots (HUMANOIDS) (pp. 521–528).

    Google Scholar 

  • Ivaldi, S., Fumagalli, M., & Pattacini, U. (2011). Doxygen documentation of the iDyn library. http://eris.liralab.it/iCub/main/dox/html/group__iDyn.html.

  • Janabi-Sharifi, F., Hayward, V., & Chen, C. S. J. (2000). Discrete-time adaptive windowing for velocity estimation. IEEE Transactions on Control Systems Technology, 8(6), 1003–1009.

    Article  Google Scholar 

  • Kulic, D., & Croft, E. (2007). Pre-collision safety strategies for human-robot interaction. Autonomous Robots, 22, 149–164.

    Article  Google Scholar 

  • Luca, A. D. (2006). Collision detection and safe reaction with the DLR-III lightweight manipulator arm. In IEEE/RSJ international conference on intelligent robots and systems (pp. 1623–1630).

    Chapter  Google Scholar 

  • Luh, J., Fisher, W., & Paul, R. (1983). Joint torque control by a direct feedback for industrial robots. IEEE Transactions on Automatic Control, 28(2), 153–161.

    Article  MATH  Google Scholar 

  • Maggiali, M., Cannata, G., Maiolino, P., Metta, G., Randazzo, M., & Sandini, G. (2008). Embedded distributed capacitive tactile sensor. In Mechatronics 2008, Limerick, Ireland.

    Google Scholar 

  • Metta, G., Sandini, G., Vernon, D., Natale, L., & Nori, F. (2008). The iCub humanoid robot: an open platform for research in embodied cognition. In PerMIS: performance metrics for intelligent systems workshop, Washington DC, USA, Aug. 19–21.

    Google Scholar 

  • Metta, G., Natale, L., Nori, F., Sandini, G., Vernon, D., Fadiga, L., von Hofsten, C., Rosander, K., Santos-Victor, J., Bernardino, A., & Montesano, L. (2010). The iCub humanoid robot: an open-systems platform for research in cognitive development. Neural Networks, 23, 1125–1134, Special issue on social cognition: from babies to robots.

    Article  Google Scholar 

  • Minguez, J., Lamiraux, F., & Laumond, J. P. (2008). Motion planning and obstacle avoidance. In B. Siciliano & O. Khatib (Eds.), Handbook of robotics (pp. 827–852). Berlin: Springer.

    Chapter  Google Scholar 

  • Mistry, M., Buchli, J., & Schaal, S. (2010). Inverse dynamics control of floating base systems using orthogonal decomposition. In IEEE int. conf. on robotics and automation.

    Google Scholar 

  • Morel, G., & Dubowsky, S. (1996). The precise control of manipulators with joint friction: a base force/torque sensor method. In IEEE int. conf. on robotics and automation (pp. 360–365).

    Google Scholar 

  • Morel, G., Iagnemma, K., & Dubowsky, S. (2000). The precise control of manipulators with high joint friction using base force/torque sensing. Automatica, 36(7), 931–941.

    Article  MathSciNet  MATH  Google Scholar 

  • Mutambara, A. (1998). Decentralized estimation and control for multisensory systems. Boca Raton: CRC Press.

    Google Scholar 

  • Parmiggiani, A., Randazzo, M., Natale, L., Metta, G., & Sandini, G. (2009). Joint torque sensing for the upper-body of the iCub humanoid robot. In Int. conf. on humanoid robotics (p. 2009). France: Paris.

    Google Scholar 

  • Pattacini, U. (2011). Doxygen documentation of the iKyn library. http://eris.liralab.it/iCub/main/dox/html/group__iKin.html.

  • Pattacini, U., Nori, F., Natale, L., Metta, G., & Sandini, G. (2010). An experimental evaluation of a novel minimum-jerk Cartesian controller for humanoid robots. In IEEE/RSJ int. conf. on intelligent robots and systems (IROS), Taipei, Taiwan.

    Google Scholar 

  • Pratt, G., & Williamson, M. (1995). Series elastic actuators. In IEEE/RSJ int. conf. on intelligent robots and systems, Los Alamitos, CA, USA (pp. 399–406).

    Google Scholar 

  • Randazzo, M., Fumagalli, M., Nori, F., Natale, L., Metta, G., & Sandini, G. (2011). A comparison between joint level torque sensing and proximal F/T sensor torque estimation: implementation on the iCub. In IEEE-RSJ int. conf on intelligent robots and systems (IROS), San Francisco, USA.

    Google Scholar 

  • Roboskin, E. P. I. F. (2010). http://www.roboskin.eu.

  • Santis, A. D., Siciliano, B., Deluca, A., & Bicchi, A. (2008). An atlas of physical human-robot interaction. Mechanism and Machine Theory, 43(3), 253–270.

    Article  MATH  Google Scholar 

  • Sciavicco, L., & Siciliano, B. (2005). Advanced textbooks in control and signal processing. Modelling and control of robot manipulators (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Siciliano, B., & Villani, L. (1996). A passivity-based approach to force regulation and motion control of robot manipulators. Automatica, 32(3), 443–447.

    Article  MathSciNet  MATH  Google Scholar 

  • Siciliano, B., & Villani, L. (2000). Robot force control. Norwell: Kluwer Academic.

    Book  Google Scholar 

  • Sisbot, E., Marin-Urias, L., Broquère, X., Sidobre, D., & Alami, R. (2010). Synthesizing robot motions adapted to human presence. International Journal of Social Robotics, 2, 329–343.

    Article  Google Scholar 

  • Wittenburg, J. (1994). Topological description of articulated systems. In NATO ASI series: Vol. 268. Computer-aided analysis of rigid and flexible mechanical systems, Part I (pp. 159–196). http://www.springerlink.com/content/l364j72l49103vv2/.

    Chapter  Google Scholar 

  • Xsens (2012). The MTx orientation tracker user manual. http://www.xsens.com/en/general/mtx.

Download references

Acknowledgements

The authors wish to thank Dr. Ugo Pattacini for the iKin software library, upon which iDyn was built. The authors acknowledge the support for the CHRIS, ITALK, Viactors and Roboskin Projects provided by the European Commission grant agreement number FP7-ICT-215805, FP7-ICT-214668, FP7-ICT-231554, FP7/2007-2013 No. 231500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Ivaldi.

Additional information

M. Fumagalli and S. Ivaldi equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fumagalli, M., Ivaldi, S., Randazzo, M. et al. Force feedback exploiting tactile and proximal force/torque sensing. Auton Robot 33, 381–398 (2012). https://doi.org/10.1007/s10514-012-9291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-012-9291-2

Keywords

Navigation