Skip to main content
Log in

Reactive navigation through multiscroll systems: from theory to real-time implementation

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In this paper a new reactive layer for multi-sensory integration applied to robot navigation is proposed. The new robot navigation technique exploits the use of a chaotic system able to be controlled in real-time towards less complex orbits, like periodic orbits or equilibrium points, considered as perceptive orbits. These are subject to real-time modifications on the basis of environment changes acquired through a distributed sensory system. The strategy is inspired to the olfactory bulb neural activity observed in rabbits subject to external stimuli. The mathematical details of the approach are given including simulation results in a virtual environment. Furthermore the proposed strategy has been tested on an experimental environment consisting of an FPGA-based hardware driving an autonomous roving robot. The obtained results demonstrate the capability to perform a real-time navigation control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arena, P., Crucitti, P., Fortuna, L., Frasca, M., Lombardo, D., & Patané, L. (2005a). Perceptive patterns for mobile robots via RD-CNN and reinforcement learning. In 9th IEEE int. workshop on cellular neural networks and their applications (CNNA 2005), Taiwan.

  • Arena, P., Fortuna, L., Frasca, M., Lo Turco, G., Patané, L., & Russo, R. (2005b). A new simulation tool for action oriented perception systems. In Proc. 10th IEEE international conference on emerging technologies and factory automation (ETFA 2005), September 19–22, Catania, Italy.

  • Arena, P., De Fiore, S., Fortuna, L., Frasca, M., Patané, L., & Vagliasindi, G. (2006a). Weak chaos control for action-oriented perception: real time implementation via FPGA. In Proc. international conference on biomedical robotics and biomechatronics (Biorob 2006), Pisa, Italy, February 20–22, 2006.

  • Arena, P., De Fiore, S., Frasca, M., & Patané, L. (2006b). Web page available on-line: http://www.scg.dees.unict.it/activities/biorobotics/perception.htm.

  • Arena, P., Frasca, M., & Patané, L. (2006c). Web page available on-line: http://www.spark.diees.unict.it/WCC.html.

  • Arena, P., Crucitti, P., Fortuna, L., Frasca, M., Lombardo, D., & Patané, L. (2007). Turing patterns in RD-CNNs for the emergence of perceptual states in roving robots. International Journal of Bifurcation and Chaos, 18(1), 107–127.

    Article  Google Scholar 

  • Arkin, R. C. (1998). Behaviour Based Robotics. Cambridge: MIT Press.

    Google Scholar 

  • Beard, R., & McClain, T. (2003). Motion planning using potential fields. BYU.

  • Boccaletti, S., Grebogi, C., Lai, Y. C., Mancini, H., & Maza, D. (2000). The control of chaos: theory and applications. Physics Reports, 329, 103–197.

    Article  MathSciNet  Google Scholar 

  • Chua, L. O., Desoer, C. A., & Kuk, E. S. (1987). Linear and nonlinear circuits. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Freeman, W. J. (1987). Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biological Cybernetics, 56, 139–150.

    Article  Google Scholar 

  • Freeman, W. J. (1991). The physiology of perception. Scientific American, 264, 78–85.

    Article  Google Scholar 

  • Freeman, W. J. (2003). A neurobiological theory of meaning in perception. Part I: information and meaning in nonconvergent and nonlocal brain dynamincs. International Journal of Bifurcation and Chaos, 13(9).

  • Freeman, W. J. (2004). How and why brains create meaning from sensory information. International Journal of Bifurcation and Chaos, 14(2).

  • Fuster, J. M. (2003). Cortex and mind: unifying cognition. Oxford: Oxford University Press.

    Google Scholar 

  • Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 5(1), 90–98.

    Article  MathSciNet  Google Scholar 

  • Harter, D., & Kozma, R. (2005). Chaotic neurodynamics for autonomous agents. IEEE Transactions on Neural Networks, 16(3), 565–579.

    Article  Google Scholar 

  • Harter, D. (2005). Evolving neurodynamics controllers for autonomous robots. In International joint conference on neural networks (pp. 137–142).

  • Lapidus, L., & Seinfeld, J. (1971). Numerical solution of ordinary differential equations. New York: Academic.

    MATH  Google Scholar 

  • Lü, J., Chen, G., Yu, X., & Leung, H. (2004). Design and analysis of multiscroll chaotic attractors from saturated function series. IEEE Transactions on Circuits and Systems, I: Regular Paper, 51.

  • Manganaro, G., Arena, P., & Fortuna, L. (1999). Cellular neural networks: chaos, complexity, and VLSI processing. Berlin: Springer.

    MATH  Google Scholar 

  • Pyragas, K. (1992). Continuos control of chaos by self-controlling feedback. Phisics Letters A, 170, 421–428.

    Article  Google Scholar 

  • Pyragas, K. (1993). Predictable chaos in slightly perturbed unpredictable chaotic systems. Physics Letters A, 181, 203–210.

    Article  Google Scholar 

  • Ritter, H., Martinetz, T., & Schulten, K. (1992). Neural computation and self-organizing maps—an introduction. New York: Addison-Wesley.

    MATH  Google Scholar 

  • Skarda, C. A., & Freeman, W. J. (1987). How brains make chaos in order to make sense of the world. Behavioral and Brain Sciences, 10, 161–195.

    Google Scholar 

  • Uexku, J. V. (1926). Theoretical biology. Brace: Harcourt.

    Google Scholar 

  • Verschure, P. F. M. J., & Althaus, P. (2003). A real-world rational agent: unifying old and new AI. Cognitive Science, 27, 561–590.

    Article  Google Scholar 

  • Verschure, P. F. M. J., Voegtlin, T., & Douglas, R. J. (2003). Environmentally mediated synergy between perception and behaviour in mobile robots. Nature, 425, 620–624.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Patané.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arena, P., De Fiore, S., Fortuna, L. et al. Reactive navigation through multiscroll systems: from theory to real-time implementation. Auton Robot 25, 123–146 (2008). https://doi.org/10.1007/s10514-007-9068-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-007-9068-1

Keywords

Navigation