Skip to main content
Log in

Cation Diffusion in a Crystallite of Mineral Illite

  • Published:
Atomic Energy Aims and scope

The results of quantum-chemical modeling of the interaction energy of an interlayer cation with the crystal structure of illite, which does not contain water molecules, are presented. It is shown that the binding energy of a single ion Li+, Rb+, and Cs+ within the working cell changes by the amount 5 eV for Li+, 25 eV for Rb+, and 110 eV for Cs+. Potential wells of the binding energy between an interlayer ion and illite are observed in the working cell. The Li+ potential wells touch and are oriented along the line connecting the Al atoms. The potential wells of the interlayer ions Rb+ and Cs+ are spatially limited. Li+, Rb+, and Cs+ ions cannot diffuse in a dry illite crystallite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. G. Mokrov and A. I. Aleksakhin, “Monitoring: basis for safety security during work on the preservation of the Karachai reservoir,” Radioakt. Otkh., No. 3 (4), 60–68 (2018).

    Google Scholar 

  2. M. V. Antonenko, V. F. Myshkin, A. S. Grigoriev, and D. O. Chubreev, “Clay-based matrices incorporating radioactive silts: a case study of sediments from spent fuel pool,” AIP Conf. Proc., 1938, Art. No. 020002 (2018).

  3. D. N. Batuk, A. A. Shiryaev, S. N. Kalmykov, et al., “Interaction of U, Np, and Pu with colloidal SiO2 particles,” Radiokhimiya, 54, No. 6, 522–526 (2012).

    Google Scholar 

  4. I. C. Bourg, A. C. M. Bourg, and G. Sposito, “Modeling diffusion and adsorption in compacted bentonite: a critical review,” J. Contam. Hydrol., 61, No. 1–4, 293–302 (2003).

    Article  ADS  Google Scholar 

  5. M. M. Fernandes, N. Ver, and B. Baeyens, “Predicting the uptake of Cs, Co, Ni, Eu, Th and U on argillaceous rocks using sorption models for illite,” Appl. Geochem., 59, 189–199 (2015).

    Article  ADS  Google Scholar 

  6. T. Melkior, S. Yahiaoui, D. Thoby, et al., “Diffusion coeffi cients of alkaline cations in Bure mudrock,” Phys. Chem. Earth, No. 32, 453–462 (2007).

    Article  ADS  Google Scholar 

  7. T. Melkior, S. Yahiaoui, S. Motellier, et al., “Cesium sorption and diffusion in Bure mudrock samples,” Appl. Clay Sci., 29, 172–186 (2005).

    Article  Google Scholar 

  8. T. Kogure, K. Morimoto, K. Tamura, et al., Chem. Lett., 41, 380 (2012).

    Article  Google Scholar 

  9. V. F. Myshkin, V. G. Plekhanov, D. A. Izhoykin, et al., “Some peculiarities of spin manifestation in isotope effects,” Adv. Mater. Res., 1040, 360–366 (2014).

    Article  Google Scholar 

  10. Ya. I. Frenkel, Kinetic Theory of Liquids, Nauka, Moscow (1975).

    MATH  Google Scholar 

  11. A. V. Melkikh, A. A. Povzner, and K. A. Shumikhina, Fundamentals of Thermodynamics and Statistical Physics, USTU, Ekaterinburg (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Myshkin.

Additional information

Translated from Atomnaya Énergiya, Vol. 131, No. 7, pp. 25–29, July, 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myshkin, V.F., Cailun, W., Tuksov, I.V. et al. Cation Diffusion in a Crystallite of Mineral Illite. At Energy 131, 22–26 (2021). https://doi.org/10.1007/s10512-022-00831-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-022-00831-1

Navigation