Skip to main content
Log in

Swelling and Radiation Creep of Ferrite-Martensite Steel Irradiated in the Bn-350 Reactor in a Wide Range of Temperature and Damaging Dose

  • Published:
Atomic Energy Aims and scope

The results of investigations of swelling and in-reactor creep of the ferrite-martensite class steels EP-450, EP-823, and EI-852 irradiated in a BN-350 reactor at 305–700°C to damaging dose in the range 20–89 dpa are presented. The characteristics of radiation creep of three of the ferrite-martensite steels are close despite the differences of the chemical composition and heat-treatment. The relation B = 4.864·10–2 + 1.45·10–3T describes the average modulus of radiation creep of the experimental steel in the interval 305–550°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. G. Reshetnikov, F. M. Mitenkov, and M. F. Troyanov, “Status and prospects of the development in the USSR of radiation resistant structural materials for fast reactor cores,” At. Énerg., 70, No. 2, 104–107 (1991).

    Google Scholar 

  2. A. E. Rusanov, V. M. Troyanov, Yu. S. Belomyttsev, et al., “Development and investigation of cladding steel for the fuel elements of nuclear reactors with heavy coolant,” in: Heavy Liquid-Metal Coolants in Nuclear Technologies, Obninsk (1999), Vol. 2, pp. 678–685.

  3. A. G. Ioltukhovsky, M. V. Leontyeva-Smirnova, Y. I. Kazennov, et al., “Influence of operation conditions on structure and properties of 12% Cr steels as candidate structural materials for fusion reactor,” J. Nucl. Mater., 258–263, 1312–1318 (1998).

    Article  Google Scholar 

  4. A. G. Ioltukhovsky, A. I. Blokhin, N. I. Budylkin, et al., “Material science and manufacturing of heat-resistant reduced activation ferritic-martensitic steels for fusion,” J. Nucl. Mater., 283–287, 652–656 (2000).

    Article  Google Scholar 

  5. V. S. Khabarov, A. M. Dvoriashin, and S. I. Porollo, “Microstructure, irradiation hardening and embrittlement of 13Cr2MoNbVB ferritic-martensitic steel after neutron irradiation at low temperatures,” J. Nucl. Mater., 233–237, 236–239 (1996).

    Article  Google Scholar 

  6. V. S. Khabarov, V. D. Dmitriev, A. M. Dvoriashin, et al., “Mechanical properties and microstructure of neutron-irradiated ferritic-martensitic steel, used as wrapper material for the BN-350 and BN-600 fast reactors,” Proc. Int. Conf., UK (1990), pp. 263–267.

  7. E. Adamov, V. Orlov, A. Filin, et al., “The next generation of fast reactors,” Nucl. Eng. Des., 173, 143–150 (1997).

    Article  Google Scholar 

  8. S. I. Porollo, A. G. Bespalov, Yu. V. Konobeev, et al., “Problems of radiation resistance of the structural materials of reactors with lead–bismuth coolant,” in: Heavy Liquid-Metal Coolants in Nuclear Technologies, Obninsk (1999), Vol. 2, pp. 686–691.

    Google Scholar 

  9. A. M. Dvoriashin, V. D. Dmitriev, and V. S. Khabarov, “The effect of neutron irradiation on the microstructure and tensile properties of 1Cr13Mo2NbVB steel,” in: Effects of Radiation on Materials: 15th Int. Symp. ASTM STP 1125 (1992), pp. 1180–1189.

  10. A. M. Dvoriashin, S. I. Porollo, Yu. V. Konobeev, and F. A. Garner, “Influence of high dose neutron irradiation on microstructure of EP-450 ferritic-martensitic steel irradiated in three Russian fast reactors,” J. Nucl. Mater., 329–333, 319–323 (2004).

    Article  Google Scholar 

  11. S. I. Porollo, A. M. Dvoriashin, Yu. V. Konobeev, and F. A. Garner, “Microstructure and mechanical properties of ferritic/ martensitic steel EP-823 after neutron irradiation to high doses in BOR-60,” J. Nucl. Mater., 329–333, 314–318 (2004).

    Article  Google Scholar 

  12. S. I. Porollo, Yu. V. Konobeev, A. M. Dvoriashin, et al., “Irradiation creep and mechanical properties of two ferritic-martensitic steels irradiated in the BN-350 fast reactor,” in: Fusion Materials Semiannual Progress Report, DOE/ ER-0313/31 (2001), pp. 106–114.

  13. Yu. V. Konobeev, A. M. Dvoriashin, S. I. Porollo, et al., “Irradiation creep and swelling of Russian ferritic-martensitic steels irradiated to very high exposures in the BN-350 fast reactor at 305–335°C,” in: Effects of Radiation on Materials: 21st Int. Symp. ASTM STP 1447 (2004), pp. 468–476.

  14. F. Garner and R. Puigh, “Irradiation creep and swelling of the fusion heats of PCA, HT9 and 9Cr–1Mo irradiated to high neutron fluence,” J. Nucl. Mater., 179–181, 577–580 (1991).

    Article  Google Scholar 

  15. M. Toloczko, B. Grambau, F. Garner, and K. Abe, “Comparison of thermal creep and irradiation creep of HT9 pressurized tubes at test temperatures from ~490°C to 600°C,” in: Effects of Radiation on Materials: 20th Int. Symp. ASTM STP 1405 (2001), pp. 557– 569.

  16. M. Toloczko, F. Garner, and C. Eiholzer, “Irradiation creep and swelling of the US fusion heats of HT9 and 9C–1Mo to 208 dpa at ~400°C,” J. Nucl. Mater., 212–215, 604–607 (1994).

    Article  Google Scholar 

  17. M. Toloczko and F. Garner, “Variability of irradiation creep and swelling of HT9 irradiated to high neutron fluence at 400–600°C,” in: Effects of Radiation on Materials: 18th Int. Symp., ASTM STR 1325 (1999), pp. 765–779.

  18. M. Toloczko and F. Garner, “Irradiation creep and void swelling of two LMR heats of HT9 at ~400°C and 165 dpa,” J. Nucl. Mater., 233–236, 289–292 (1996).

    Article  Google Scholar 

  19. M. Toloczko, F. Garner, J. Standring, et al., “Flux and composition dependence of irradiation creep of austenitic alloys irradiated in PFR at ~420°C,” J. Nucl. Mater., 258–263, 1606–1612 (1998).

    Article  Google Scholar 

  20. M. Grossbeck and L. Mansur, “Low-temperature irradiation creep of fusion reactor structural materials,” J. Nucl. Mater., 179–181, 130–134 (1991).

    Article  Google Scholar 

  21. M. Grossbeck, L. Gibson, S. Jitsukawa, et al., “Irradiation creep at temperatures of 400°C and below for application to near-term fusion devices,” in: Effects of Radiation on Materials: 18th Int. Symp. ASTM STR 1325 (1999), pp. 725–741.

  22. L. M. Zabudko, I. N. Kravchenko, O. S. Korostin, and A. N. Ogorodov, “Analysis of the BN-600 reactor subassemblies operating experience,” Proc. Int. Conf., UK (1990), pp. 289–292.

  23. J. Cheon, C. Lee, B. Lee, et al., “Sodium fast reactor evaluation: Core materials,” J. Nucl. Mater., 392, 324–330 (2009).

    Article  ADS  Google Scholar 

  24. D. S. Gelles, “Effects of irradiation on ferritic alloys and implications for fusion reactor applications,” J. Nucl. Mater., 149, 192–199 (1987).

    Article  ADS  Google Scholar 

  25. A. Kohyama, Y. Kohno, K. Asakura, et al., “Irradiation creep of low-activation ferritic steels in FFTF/MOTA,” J. Nucl. Mater., 212–215, 751–754 (1994).

    Article  Google Scholar 

  26. J. Seran, V. Levy, P. Dubuisson, et al., “Behaviour under neutron irradiation of the 15–15 Ti and EM10 steels used as standard materials of the Phenix fuel subassembly,” in: Effects of Radiation on Materials: 15th Int. Symp. ASTM STP 1125 (1992), pp. 1209–1233.

  27. R. Klueh and D. Harries, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, ASTM, USA (2001).

    Book  Google Scholar 

  28. E. Little and D. Stow, “Void swelling in iron and ferritic steels. II. An experimental survey,” J. Nucl. Mater., 87, 25–39 (1973).

    Article  ADS  Google Scholar 

  29. S. I. Porollo, S. V. Shulepin, A. A. Ivanov, et al., “Swelling and radiation creep of austenitic corrosion-resistant steel, irradiated by neutrons in a wide range of dose and temperature,” At. Énerg., 110, No. 4, 207–214 (2011).

    Article  Google Scholar 

  30. S. N. Bozin, B. S. Rodchenkov, A. D. Kashtanov, et al., “Investigations of structural materials for a lead-cooled reactor,” At. Énerg., 113, No. 5, 257–263 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Atomnaya Énergiya, Vol. 120, No. 3, pp. 148–155, March, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porollo, S.I., Konobeev, Y.V., Ivanov, A.A. et al. Swelling and Radiation Creep of Ferrite-Martensite Steel Irradiated in the Bn-350 Reactor in a Wide Range of Temperature and Damaging Dose. At Energy 120, 189–198 (2016). https://doi.org/10.1007/s10512-016-0116-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-016-0116-9

Navigation