Skip to main content
Log in

Method for analyzing the spatial distribution of galaxies on gigaparsec scales. I. initial principles

  • Published:
Astrophysics Aims and scope

Abstract

The initial principles of a method for analyzing the spatial distribution of visible matter in the universe with structures on size scales of thousands of Mpc are discussed. This method is based on analyzing the distribution N(z) of the photometric redshifts of galaxies in deep fields using large bins Δ z=0.1–0.3. Fluctuations in the numbers of galaxies in these bins in terms of redshifts are caused by Poisson noise, correlated structures, and systematic errors in estimating photo-z. This method involves covering a sufficiently large region of the celestial sphere with a grid of deep multi-band surveys with a cell size on the order of 10º×10º, with deep fields of size ∼10'×10' observed with 3-10 meter telescopes at its nodes. The distribution of the photometric redshifts of the galaxies within each deep field will yield information on the radial extent of superlarge structures, while comparing the radial distributions in neighboring fields will yield information on the tangential extent of these structures. A necessary element of this method is an analysis of possible distortions in the radial distributions of the galaxies associated with the technique for evaluating the photometric redshifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Einasto and M. Gramann, Astrophys. J. 407, 443 (1993).

    Article  ADS  Google Scholar 

  2. Yu. V. Baryshev and P. Teerikorpi, Byulleten’ SAO RAN 59, 92 (2006).

    Google Scholar 

  3. J. Einasto, M. Einasto, E. Saar, et al., Astron. Astrophys. 459, L1 (2006).

    Article  ADS  Google Scholar 

  4. P. J. E. Peebles, Principles of Physical Cosmology, Princeton Univ. Press, Princeton, NJ (1993).

    Google Scholar 

  5. T. J. Broadhurst, R. S. Ellis, et al., Nature 343, 726 (1990).

    Article  ADS  Google Scholar 

  6. A. S. Szalay, T. J. Broadhurst, N. Ellman, et al., PNAS 90, 4853 (1993).

    Article  ADS  Google Scholar 

  7. J. Einasto, M. Einasto, E. Saar, et al., Astron. Astrophys. 462, 397 (2007).

    Article  ADS  Google Scholar 

  8. F. Sylos Labini, L. N. Vasilyev, L. Pietronero, and Y. V. Baryshev, Europhys. Lett. 86, 49001 (2009).

    Article  ADS  Google Scholar 

  9. J. R. Gott III, M. Juric, and D. Schlegel, Astrophys. J. 624, 463 (2005).

    Article  ADS  Google Scholar 

  10. V. P. Reshetnikov, UFN 175, 1163 (2005).

    Article  Google Scholar 

  11. C. Wolf, K. Meisenheimer, M. Kleinheinrich, et al., Astron. Astrophys. 421, 913 (2004).

    Article  ADS  Google Scholar 

  12. R. Massey, J. Rhodes, R. Ellis, et al., Nature 445, 286 (2007).

    Article  ADS  Google Scholar 

  13. J. Heidt, I. Appenzeller, A. Gabasch, and K. Jager, Astron. Astrophys. 398, 49 (2003).

    Article  ADS  Google Scholar 

  14. S. V. W. Beckwith, M. Stiavelli, A. M. Koekemoer, et al., Astrophys. J. 132, 1729. (2006).

    Google Scholar 

  15. M. Moles, N. Benitez, J. A. L. Aguerri, et al., Astrophys. J. 136, 1325 (2008).

    Google Scholar 

  16. I. Appenzeller, R. Bender, A. Bohm, et al., Messenger 116, 8 (2004).

    ADS  Google Scholar 

  17. R. Massey, J. Rhodes, A. Leauthaud, et al., Astrophys. J. 172, 239 (2007).

    Article  Google Scholar 

  18. W. J. Percival, N. C. Robert, D. J. Eisenstein, et al., Astrophys. J. 657, 645 (2006).

    Article  ADS  Google Scholar 

  19. N. Yu. Lovyagin, Astrofizicheskii Byulleten’ SAO RAN 64, 213 (2009).

    Google Scholar 

  20. P. Heinamaki, et al., astro-ph/0507197 (2005).

  21. J. Kim, Ch. Park, J. R. Gott, and J. Dubinski, Astrophys. J. 701, 1547 (2009).

    Article  ADS  Google Scholar 

  22. P. J. E. Peebles, The Large-Scale Structure of the Universe, Princeton Univ. Press, Princeton, NJ (1980).

    Google Scholar 

  23. A. Gabrielli, F. Sylos Labini, M. Joyce, and L. Pietronero, Statistical Physics for Cosmic Structures, Springer (2005).

  24. R. S. Somerville, K. Lee, H. C. Ferguson, et al., Astrophys. J. 600, 171 (2004).

    Article  ADS  Google Scholar 

  25. H. Hildebrandt, C. Wolf, and N. Benitez, Astron. Astrophys. 480, 703 (2008).

    Article  ADS  Google Scholar 

  26. T. Budavari, astro/ph 0811.2600 (2008).

  27. N. Benitez, M. Moles, J. Aguerri, et al., Astrophys. J. 692, 5 (2009).

    Article  ADS  Google Scholar 

  28. R. Kotulla and U. Fritze, Mon. Notic. Roy. Astron. Soc. 393, 55 (2009).

    Article  ADS  Google Scholar 

  29. N. Padmanabhan, D. J. Schlegel, U. Seljak, et al., Mon. Notic. Roy. Astron. Soc. 378, 852 (2007).

    Article  ADS  Google Scholar 

  30. M. Zatloukal, H -J. Roser, C. Wolf, H. Hippelein, and S. Falter, Astron. Astrophys. 474, 5 (2007).

    Article  ADS  Google Scholar 

  31. M. Bolzonella, J.-M. Miralles, and R. Pello, Astron. Astrophys. 363, 476 (2000).

    ADS  Google Scholar 

  32. N. Benitez, E. Gaztanaga, R. Miquel, et al., Astrophys. J. 691, 241 (2009).

    Article  ADS  Google Scholar 

  33. G. D. Coleman, C. C. Wu, and D. W. Weedman, Astrophys. J. Suppl. Ser. 43, 393 (1980).

    Article  ADS  Google Scholar 

  34. J. S. Bloom, Astron. J. 125, 2866 (2003).

    MathSciNet  Google Scholar 

  35. F. Fiore, D. Guetta, S. Piranomonte, V. D’Elia, and L. A. Antonelli, Astron. Astrophys. 470, 515 (2007).

    Article  ADS  Google Scholar 

  36. D. M. Coward, D. Guetta, R. R. Burman, and A. Imerito, Mon. Notic. Roy. Astron. Soc. 386, 111 (2008).

    Article  ADS  Google Scholar 

  37. I. V. Sokolov, et al., Astrofiz. Byull. (2009) (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Nabokov.

Additional information

Translated from Astrofizika, Vol. 53, No. 1, pp. 105-116 (February 2010).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabokov, N.V., Baryshev, Y.V. Method for analyzing the spatial distribution of galaxies on gigaparsec scales. I. initial principles. Astrophysics 53, 91–100 (2010). https://doi.org/10.1007/s10511-010-9102-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-010-9102-4

Keywords

Navigation