Skip to main content
Log in

Existence of periodic solutions and their stability for a sextic galactic potential function

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The periodic solutions for the Hamiltonian function governing the sextic galactic potential function in accordance with two different methods are investigated. The first method is applied using the averaging theory of first order. The sufficient conditions on the parameters for the stability are given and analyzed. The numerical examples of families of periodic orbits are introduced. Meanwhile, the second method is presented using Lyapunov’s theorem for the holomorphic integral, where the periodic solutions depend on the type of the equilibrium points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ablowitz, M.J., Ramani, A., Segur, H.: A connection between nonlinear evaluation equations and ordinary differential equations of P-type. J. Math. Phys. 21, 715–721 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  • Arnold, V.I., Kozlov, V.V., Neishtadt, A.: Dynamical Systems III. Mathematical Aspects of Classical and Celestial Mechanics (1993)

    Book  Google Scholar 

  • Arnold, V.I., Kozlov, V.V., Neishtadt, A.: Mathematical Aspects of Classical and Celestial Mechanics. Springer, Berlin (2007)

    MATH  Google Scholar 

  • Bogoliubov, N., Mitropolsky, Y.: Asymptotic Methods in the Theory of Nonlinear Oscillations. Gordon and Breach, New York (1961)

    Google Scholar 

  • Buică, A., Llibre, J.: Averaging methods for finding periodic orbits via Brouwer degree. Bull. Sci. Math. 128(1), 7–22 (2004)

    Article  MathSciNet  Google Scholar 

  • Carrasco-Olivera, D., Uribe, M., Vidal, C.: Periodic orbits associated to Hamiltonian functions of degree four. J. Nonlinear Math. Phys. 21(3), 336–356 (2014)

    Article  MathSciNet  Google Scholar 

  • Contopoulos, G., Polymilis, C.: Approximations of the 3-particle Toda lattice. Physica D 24(1–3), 328–342 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  • Davies, K.T., Huston, T.E., Baranger, M.: Calculations of periodic trajectories for the Hénon–Heiles Hamiltonian using the monodromy method. Chaos 2, 215–224 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  • El-Dessoky, M.M., Elmandouh, A.A., Hobiny, A.: Periodic orbits of the generalized Friedmann-Robertson-Walker potential in galactic dynamics in a rotating reference frame. AIP Adv. 7, 035021 (2017)

    Article  ADS  Google Scholar 

  • El-Sabaa, F.: About the periodic solution of Kovaleveskaya’s top by using Liapunov’s method. J. Univ. Kuwait, Sci. 16, 21–27 (1989)

    MathSciNet  MATH  Google Scholar 

  • El-Sabaa, F.: Periodic solutions and their stability for the problem of gyrostat. Astrophys. Space Sci. 183, 199–213 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  • El-Sabaa, F.: About the periodic solutions of a rigid body in a central Newtonian field. Celest. Mech. Dyn. Astron. 55, 323–330 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  • El-Sabaa, F., Sherief, H.: On the galactic motion. Celest. Mech. Dyn. Astron. 49, 233–247 (1990a)

    Article  ADS  MathSciNet  Google Scholar 

  • El-Sabaa, F., Sherief, H.: Periodic orbits of galactic motion. Astrophys. Space Sci. 167, 305–315 (1990b)

    Article  ADS  MathSciNet  Google Scholar 

  • Fatou, P.: Sur le mouvement d’un système soumis à des forces à courte période. Bull. Soc. Math. Fr. 56, 98–139 (1928)

    Article  MathSciNet  Google Scholar 

  • Jiménez-Lara, L., Llibre, J.: Periodic orbits and non-integrability of generalized classical Yang-Mills Hamiltonian systems. J. Math. Phys. 52, 032901 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  • Krylov, N., Bogoliubov, N.: Introduction to non-linear mechanics (in Russian) Patent No. 1, Kiev (1937)

  • Llibre, J., Jiménez-Lara, L.: Periodic orbits and non-integrability of Hénon–Heiles systems. J. Phys. A, Math. Theor. 44, 205103 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  • Llibre, J., Makhlouf, A.: Periodic orbits of the generalized Friedmann-Robertson-Walker Hamiltonian systems. Astrophys. Space Sci. 344, 45–50 (2013)

    Article  ADS  Google Scholar 

  • Lyapunov, A.M.: General Problem of Stability of Motion. Collected Works, vol. 2. Izd. Akad. Nauk SSSR, Moscow (1956)

    Google Scholar 

  • Maciejewski, A.J., Przybylska, M., Stachowiak, T., Szydlowski, M.: Global integrability of cosmological scalar fields. J. Phys. A, Math. Theor. 41, 465101 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Morales-Ruiz, J.J., Ramis, J.-P., Simo, C.: Integrability of Hamiltonian systems and differential Galois groups of higher variational equations. Ann. Sci. Éc. Norm. Supér. 40, 845–884 (2007)

    Article  MathSciNet  Google Scholar 

  • Ortega, A.C.: Periodic orbits of mechanical systems with homogeneous polynomial terms of degree five. Astrophys. Space Sci. 361, 1–8 (2016)

    Article  MathSciNet  Google Scholar 

  • Ozaki, J., Kurosaki, S.: Periodic orbits of Hénon Heiles Hamiltonian: bifurcation phenomenon. Prog. Theor. Phys. 95, 519–529 (1996)

    Article  ADS  Google Scholar 

  • Pucacco, G., Boccaletti, D., Belmonte, C.: Quantitative predictions with detuned normal forms. Celest. Mech. Dyn. Astron. 102, 163–176 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Ramani, A., Grammaticos, B., Bountis, T.: The Painlevé property and singularity analysis of integrable and non-integrable systems. Phys. Rep. 180, 159–245 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  • Toda, M.: Vibration of a chain with nonlinear interaction. J. Phys. Soc. Jpn. 22, 431–436 (1967)

    Article  ADS  Google Scholar 

  • Uribe, M., Quispe, M.: Existence and stability of periodic orbits for a Hamiltonian system with homogeneous potential of degree five. Differ. Equ. Dyn. Syst. (2020). https://doi.org/10.1007/s12591-020-00526-8

    Article  Google Scholar 

  • Verhulst, F.: Differential Equations and Dynamical Systems. Henri Poincaré, pp. 109–177. Springer, Berlin (2012)

    Google Scholar 

  • Yehia, H.M.: On periodic, almost stationary motions of a rigid body about a fixed point. J. Appl. Math. Mech. 41, 556–558 (1977)

    Google Scholar 

  • Zakharov, V.E., Ivanov, M.F., Shur, L.N.: On anomalously slow stochastization in certain two-dimensional models of field theory. Zh. Èksp. Teor. Fiz. Lett. 30, 39–44 (1979)

    Google Scholar 

  • Ziglin, S.L.V.: Branching of solutions and the nonexistence of first integrals in Hamiltonian mechanics. II. Funct. Anal. Appl. 17, 6–17 (1983)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the anonymous referee for their comments which substantially improved the presentation of their paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Gad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$\begin{aligned} &M_{0} = 5BC^{2} + D\bigl[3C^{2} - (5A + 3C)D\bigr],\\ &M_{1} = BC^{2} + D\bigl[C^{2} - (A + C)D\bigr], \\ &M_{2} = 5BC^{2} + D\bigl[C^{2} - (5A + C)D \bigr],\\ & M_{3} = B + C - 2D + l_{1}, \\ &M_{4} = A - B - 3C + 3D,\qquad M_{5} = A - 2C + D + l_{1}, \\ &M_{6} = BC + C^{2} - AD - D^{2} + (C - D)l_{1},\\ & M_{7} = - (B + C - 2D) + l_{1}, \\ &M_{8} = A - 2C + D - l_{1},\\ & M_{9} = - BC - C^{2} + D(A + D) + (C - D)l_{1}, \\ &M_{10} = 5B + C - 2D + l_{2},\\ & M_{11} = 5(A - B) + 3(D - C), \\ &M_{12} = 5A - 2C + D + l_{2},\\ & M_{13} = 5BC + C^{2} - D(5A + D) + (C - D)l_{2}, \\ &M_{14} = - (5B + C - 2D) + l_{2},\\ & M_{15} = 5A - 2C + D - l_{2}, \\ &M_{16} = - 5BC - C^{2} + D(5A + D) + (C - D)l_{2}, \end{aligned}$$

Appendix 2

$$\begin{aligned} &N_{1} = M_{4}\bigl\{ \bigl[AB - BC + C^{2} - (A + C)D + D^{2}\bigr]\\ &\phantom{N_{1} =}{}\times \bigl[( - C\bigl(3AB + B^{2} + 2AC - 3BC - 2C^{2}\bigr) \\ &\phantom{N_{1} =}{}+ (A - C) (A + 3B + 4C)D + ( - 3A + 2B + 4C)D^{2} \\ &\phantom{N_{1} =}{}- 2D^{3}\bigr] + \bigl[A^{2}\bigl( - BC + 3BD + 2D(C - 2D)\bigr) \\ &\phantom{N_{1} =}{}+ (2C - D) \bigl(2B^{2}C+ B(C - 2D) (C + D) \\ &\phantom{N_{1} =}{} + (C - 2D) \bigl(C^{2} - D^{2}\bigr) \bigr) + A\bigl( - 3B^{2}C + DB^{2} \\ &\phantom{N_{1} =}{}- (C - 2D) (2C - D) (C + D) + B\bigl(D^{2} - C^{2}\bigr) \bigr)\bigr]l_{1}\bigr\} , \\ &N_{2} = M_{4}\bigl\{ \bigl[AB - BC + C^{2} - (A + C)D + D^{2}\bigr]\\ &\phantom{N_{1} =}{}\times\bigl[( - C\bigl(3AB + B^{2} + 2AC- 3BC - 2C^{2}\bigr) \\ &\phantom{N_{1} =}{} + (A - C) (A + 3B + 4C)D + ( - 3A + 2B + 4C)D^{2} \\ &\phantom{N_{1} =}{}- 2D^{3}\bigr] + \bigl[A^{2}\bigl(BC - 3BD - 2D(C - 2D) \bigr) \\ &\phantom{N_{1} =}{}- (2C - D) \bigl(2B^{2}C + B(C- 2D) (C + D) \\ &\phantom{N_{1} =}{}+ (C - 2D) \bigl(C^{2} - D^{2}\bigr)\bigr) + A\bigl(3B^{2}C - DB^{2} \\ &\phantom{N_{1} =}{}+ (C - 2D) (2C - D) (C + D) - B\bigl(D^{2} - C^{2}\bigr) \bigr)\bigr]l_{1}\bigr\} ,\\ &N_{3} = M_{11}\bigl\{ \bigl[25AB - 5BC + C^{2} - (5A + C)D + D^{2}\bigr] \\ &\phantom{N_{1} =}{}\times\bigl[C\bigl( - 25B(3A + B)+ 5( - 2A + 3B)C + 2C^{2}\bigr) \\ &\phantom{N_{1} =}{} + (5A - C) (5A + 15B + 4C)D \\ &\phantom{N_{1} =}{}+ ( - 15A + 10B + 4C)D^{2} - 2D^{3}\bigr]\\ &\phantom{N_{1} =}{} + \bigl[ - 25A^{2}\bigl(5B(C - 3D) - 2D(C - 2D)\bigr) \\ &\phantom{N_{1} =}{}+ (2C - D) \bigl(50B^{2}C + 5B(C - 2D) (C + D) \\ &\phantom{N_{1} =}{}+ (C - 2D) \bigl(C^{2} - D^{2}\bigr)\bigr) \\ &\phantom{N_{1} =}{}- 5A\bigl(25B^{2}(3C - D) + (C - 2D) (2C - D) (C + D) \\ &\phantom{N_{1} =}{}- 5B \bigl(D^{2} - C^{2}\bigr)\bigr)\bigr]l_{2} \bigr\} , \\ &N_{4} = M_{11}\bigl\{ \bigl[25AB - 5BC + C^{2} - (5A + C)D + D^{2}\bigr]\\ &\phantom{N_{1} =}{}\times \bigl[C\bigl( - 25B(3A + B)+ 5( - 2A + 3B)C + 2C^{2}\bigr) \\ &\phantom{N_{1} =}{} + (5A - C) (5A + 15B + 4C)D + ( - 15A \\ &\phantom{N_{1} =}{}+ 10B + 4C)D^{2} - 2D^{3}\bigr]\\ &\phantom{N_{1} =}{} + \bigl[25A^{2} \bigl(5B(C - 3D) - 2D(C - 2D)\bigr) \\ &\phantom{N_{1} =}{}- (2C - D) \bigl(50B^{2}C + 5B(C - 2D) (C + D)\\ &\phantom{N_{1} =}{} + (C - 2D) \bigl(C^{2} - D^{2}\bigr)\bigr) \\ &\phantom{N_{1} =}{}+ 5A\bigl(25B^{2}(3C - D) + (C - 2D) (2C - D) (C + D)\\ &\phantom{N_{1} =}{} - 5B \bigl(D^{2} - C^{2}\bigr)\bigr)\bigr]l_{2} \bigr\} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sabaa, F.M., Amer, T.S., Gad, H.M. et al. Existence of periodic solutions and their stability for a sextic galactic potential function. Astrophys Space Sci 366, 74 (2021). https://doi.org/10.1007/s10509-021-03981-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-021-03981-z

Keywords

Navigation