Skip to main content
Log in

Ionospheric VTEC variations over Pakistan in the descending phase of solar activity during 2016–17

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

This paper presents the variations of the ionospheric Vertical Total Electron Content (VTEC) observed over Pakistan at the verge of low- to mid-latitude regions during the years 2016–17 of the descending phase of the solar cycle. The study is conducted by considering the ionospheric measurements from dual frequency Global Navigation Satellite System (GNSS) receivers permanently installed at Islamabad (geomagnetic Lat. 25.44°N, Long. 148.83°E), Multan (geomagnetic Lat. 22.13°N, Long. 146.91°E) and Quetta (geomagnetic Lat. 22.50°N, Long. 142.73°E). The diurnal, seasonal and annual variations of VTEC over Pakistan are examined in the context of geomagnetic storm during 2016. This study shows high values during the March and September equinoctial months and lower values during the summer and winter solstices from VTEC estimations. Furthermore, higher, moderate and lower VTEC variations are recorded during the seasonal analysis in the equinoxes, summer solstice and winter solstice, respectively. The maximum seasonal VTEC values are observed during the post-sunrise hours between 11:00–17:00 LT and the minimum values are recorded during the post-midnight hours between 02:00–05:00 LT during each season at all the stations. Moreover, the effect of geomagnetic storm is detected in the ionospheric VTEC of the three different stations, which occurred on 13 October 2016. The initial phase of the storm caused no prominent effect on VTEC, while an enhancement in VTEC is registered in the main and recovery phases of the storm. The recorded VTEC from three different stations is correlated with the indices of the geomagnetic storm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adewale, A., Oyeyemi, E., Cilliers, P., McKinnell, L., Adeloye, A.: Low solar activity variability and IRI 2007 predictability of equatorial Africa GPS TEC. Adv. Space Res. 49, 316–326 (2012). https://doi.org/10.1016/j.asr.2011.09.032

    Article  ADS  Google Scholar 

  • Bagiya, M.S., Joshi, H., Iyer, K., Aggarwal, M., Ravindran, S., Pathan, B.: TEC variations during low solar activity period (2005–2007) near the equatorial ionospheric anomaly crest region in India. Ann. Geophys. 27, 1047–1057 (2009). https://doi.org/10.5194/angeo-27-1047-2009

    Article  ADS  Google Scholar 

  • Balan, N., Bailey, G.: Equatorial plasma fountain and its effects: possibility of an additional layer. J. Geophys. Res. Space Phys. 100, 21421–21432 (1995). https://doi.org/10.1029/95JA01555

    Article  ADS  Google Scholar 

  • Balan, N., Otsuka, Y., Nishioka, M., Liu, J., Bailey, G.: Physical mechanisms of the ionospheric storms at equatorial and higher latitudes during the recovery phase of geomagnetic storms. J. Geophys. Res. Space Phys. 118, 2660–2669 (2013)

    Article  ADS  Google Scholar 

  • Barkat, A., Ali, A., Rehman, K., Awais, M., Tariq, M.A., Ahmed, J., Amin, M.A., Iqbal, T.: Multi-precursory analysis of Phalla earthquake (July 2015; Mw 5.1) near Islamabad, Pakistan. Pure Appl. Geophys. 175, 4289–4304 (2018). https://doi.org/10.1007/s00024-018-1927-5. 2015

    Article  ADS  Google Scholar 

  • Bhattacharya, S., Purohit, P., Gwal, A.: Ionospheric time delay variations in the equatorial anomaly region during low solar activity using GPS. Indian J. Radio Space Phys. 38, 266–274 (2009)

    Google Scholar 

  • Bhattarai, S., Lopez, R.: Reduction of viscous potential for northward interplanetary magnetic field as seen in the LFM simulation. J. Geophys. Res. Space Phys. 118, 3314–3322 (2013). https://doi.org/10.1002/jgra.50368

    Article  ADS  Google Scholar 

  • Bolaji, O., Adeniyi, J., Radicella, S., Doherty, P.: Variability of total electron content over an equatorial West African station during low solar activity. Radio Sci. 47, RS1001 (2012). https://doi.org/10.1029/2011RS004812

    Article  ADS  Google Scholar 

  • Cesaroni, C., Spogli, L., Alfonsi, L., De Franceschi, G., Ciraolo, L., Monico, J.F.G., Scotto, C., Romano, V., Aquino, M., Bougard, B.: L-band scintillations and calibrated total electron content gradients over Brazil during the last solar maximum. J. Space Weather Space Clim. 5, A36 (2015)

    Article  Google Scholar 

  • Chakraborty, S., Hajra, R.: Electrojet control of ambient ionization near the crest of the equatorial anomaly in the Indian zone. Ann. Geophys. 27, 93 (2009). https://doi.org/10.5194/angeo-27-93-2009

    Article  ADS  Google Scholar 

  • Chapman, S.: The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Proc. Phys. Soc. 43, 26 (1931)

    Article  ADS  Google Scholar 

  • Chen, Y., Ma, G., Huang, W., Shen, H., Li, J.: Night-time total electron content enhancements at equatorial anomaly region in China. Adv. Space Res. 41, 617–623 (2008). https://doi.org/10.1016/j.asr.2007.07.035

    Article  ADS  Google Scholar 

  • Chowdhary, V.R., Tripathi, N., Arunpold, S., Raju, D.K.: Variations of total electron content in the equatorial anomaly region in Thailand. Adv. Space Res. 55, 231–242 (2015). https://doi.org/10.1016/j.asr.2014.09.024

    Article  ADS  Google Scholar 

  • Davies, K.: Ionospheric Radio. Peter Peregrinus, London (1990). https://doi.org/10.1049/PBEW031E

    Book  Google Scholar 

  • De Abreu, A., Fagundes, P., Gende, M., Bolaji, O., De Jesus, R., Brunini, C.: Investigation of ionospheric response to two moderate geomagnetic storms using GPS–TEC measurements in the South American and African sectors during the ascending phase of solar cycle 24. Adv. Space Res. 53, 1313–1328 (2014). https://doi.org/10.1016/j.asr.2014.02.011

    Article  ADS  Google Scholar 

  • Duncan, R.: The equatorial F-region of the ionosphere. J. Atmos. Terr. Phys. 18, 89–100 (1960). https://doi.org/10.1016/0021-9169(60)90081-7

    Article  ADS  Google Scholar 

  • Förster, M., Jakowski, N.: Geomagnetic storm effects on the topside ionosphere and plasmasphere: a compact tutorial and new results. Surv. Geophys. 21, 47–87 (2000). https://doi.org/10.1023/A:1006775125220

    Article  ADS  Google Scholar 

  • Gonzalez, W., Joselyn, J., Kamide, Y., Kroehl, H., Rostoker, G., Tsurutani, B., Vasyliunas, V.: What is a geomagnetic storm? J. Geophys. Res. Space Phys. 99, 5771–5792 (1994). https://doi.org/10.1029/93JA02867

    Article  ADS  Google Scholar 

  • Goodman, J.M.: Space Weather & Telecommunications. The International Series in Engineering and Computer Science, vol. 782. Springer, Berlin (2006). https://doi.org/10.1007/b102193

    Book  Google Scholar 

  • Gurtner, W., Estey, L.: RINEX. The Receiver Independent Exchange Format. Version 3.00. Astronomical Institute, University of Bern and UNAVCO, Bolulder, Colorado (2007)

    Google Scholar 

  • Hernández-Pajares, M., Juan, J., Sanz, J., Orus, R., Garcia-Rigo, A., Feltens, J., Komjathy, A., Schaer, S., Krankowski, A.: The IGS VTEC maps: a reliable source of ionospheric information since 1998. J. Geod. 83, 263–275 (2009)

    Article  ADS  Google Scholar 

  • Hernández-Pajares, M., Juan, J.M., Sanz, J., Aragón-Àngel, À., García-Rigo, A., Salazar, D., Escudero, M.: The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques. J. Geod. 85, 887–907 (2011)

    Article  ADS  Google Scholar 

  • Hernández-Pajares, M., Roma-Dollase, D., Krankowski, A., García-Rigo, A., Orús-Pérez, R.: Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J. Geod. 91, 1405–1414 (2017)

    Article  ADS  Google Scholar 

  • Huang, C.S., Roddy, P.A.: Effects of solar and geomagnetic activities on the zonal drift of equatorial plasma bubbles. J. Geophys. Res. Space Phys. 121, 628–637 (2016). https://doi.org/10.1002/2015JA021900

    Article  ADS  Google Scholar 

  • Jain, A., Tiwari, S., Jain, S., Gwal, A.: Nighttime enhancements in TEC near the crest of northern equatorial ionization anomaly during low solar activity period. Indian J. Phys. 85, 1367–1380 (2011). https://doi.org/10.1007/s12648-011-0159-7

    Article  ADS  Google Scholar 

  • Kumar, S., Singh, A.: The effect of geomagnetic storm on GPS derived total electron content (TEC) at Varanasi, India. J. Phys. Conf. Ser. 208, 012062 (2010)

    Article  Google Scholar 

  • Li, G., Ning, B., Liu, L., Zhao, B., Yue, X., Su, S.Y., Venkatraman, S.: Correlative study of plasma bubbles, evening equatorial ionization anomaly, and equatorial prereversal \(\mathbf{E}\times \mathbf{B}\) drifts at solar maximum. Radio Sci. 43, RS4005 (2008). https://doi.org/10.1029/2007RS003760

    Article  ADS  Google Scholar 

  • Liu, G., Huang, W., Gong, J., Shen, H.: Seasonal variability of GPS-VTEC and model during low solar activity period (2006–2007) near the equatorial ionization anomaly crest location in Chinese zone. Adv. Space Res. 51, 366–376 (2013). https://doi.org/10.1016/j.asr.2012.09.002

    Article  ADS  Google Scholar 

  • Martyn, D.: Atmospheric tides in the ionosphere—I. Solar tides in the F2 region. Proc. R. Soc. Lond. A 189, 241–260 (1947)

    Article  ADS  Google Scholar 

  • Moldwin, M.: An Introduction to Space Weather. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/CBO9780511801365

    Book  Google Scholar 

  • Olawepo, A., Adeniyi, J., Oluwadare, E.: TEC variations and IRI-2012 performance at equatorial latitudes over Africa during low solar activity. Adv. Space Res. 59, 1800–1809 (2017). https://doi.org/10.1016/j.asr.2017.01.017

    Article  ADS  Google Scholar 

  • Oryema, B., Jurua, E., D’ujanga, F., Ssebiyonga, N.: Investigation of TEC variations over the magnetic equatorial and equatorial anomaly regions of the African sector. Adv. Space Res. 56, 1939–1950 (2015)

    Article  ADS  Google Scholar 

  • Pham, K.H., Lopez, R.E., Bruntz, R.: The effect of a brief northward turning in IMF Bz on solar wind-magnetosphere coupling in a global MHD simulation. J. Geophys. Res. Space Phys. 121, 4291–4299 (2016). https://doi.org/10.1002/2015JA021982

    Article  ADS  Google Scholar 

  • Rao, P.R., Krishna, S.G., Niranjan, K., Prasad, D.: Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during the low solar activity period of 2004–2005. Ann. Geophys. 24, 3279–3292 (2006). https://doi.org/10.5194/angeo-24-3279-2006

    Article  ADS  Google Scholar 

  • Roma-Dollase, D., Hernández-Pajares, M., Krankowski, A., Kotulak, K., Ghoddousi-Fard, R., Yuan, Y., Li, Z., Zhang, H., Shi, C., Wang, C.: Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J. Geod. 92, 691–706 (2018)

    Article  ADS  Google Scholar 

  • Sardar, N., Singh, A.K., Nagar, A., Mishra, S., Vijay, S.: Study of latitudinal variation of ionospheric parameters—a detailed report. J. Indian Geophys. Union 16, 113–133 (2012)

    Google Scholar 

  • Schunk, R., Nagy, A.: Ionospheres. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  • Seemala, G.K.: GPS-TEC analysis application read me. Institute for Scientific Research, Boston College, USA (2011)

  • Sharma, K., Dabas, R., Ravindran, S.: Study of total electron content variations over equatorial and low latitude ionosphere during extreme solar minimum. Astrophys. Space Sci. 341, 277–286 (2012). https://doi.org/10.1007/s10509-012-1133-3

    Article  ADS  Google Scholar 

  • Stolle, C., Manoj, C., Lühr, H., Maus, S., Alken, P.: Estimating the daytime equatorial ionization anomaly strength from electric field proxies. J. Geophys. Res. Space Phys. 113, A09310 (2008). https://doi.org/10.1029/2007JA012781

    Article  ADS  Google Scholar 

  • Su, Y., Bailey, G., Balan, N.: Night-time enhancements in TEC at equatorial anomaly latitudes. J. Atmos. Terr. Phys. 56, 1619–1628 (1994). https://doi.org/10.1016/0021-9169(94)90091-4

    Article  ADS  Google Scholar 

  • Tariq, M.A., Shah, M., Hernández-Pajares, M., Iqbal, T.: Pre-earthquake ionospheric anomalies before three major earthquakes by GPS-TEC and GIM-TEC data during 2015–2017. Adv. Space Res. 63, 2088–2099 (2019a). https://doi.org/10.1016/j.asr.2018.12.028

    Article  ADS  Google Scholar 

  • Tariq, M.A., Shah, M., Ulukavak, M., Iqbal, T.: Comparison of TEC from GPS and IRI-2016 model over different regions of Pakistan during 2015–2017. Adv. Space Res. (2019b). https://doi.org/10.1016/j.asr.2019.05.019

    Article  Google Scholar 

  • Tsai, H.F., Liu, J.Y., Tsai, W.H., Liu, C.H., Tseng, C.L., Wu, C.C.: Seasonal variations of the ionospheric total electron content in Asian equatorial anomaly regions. J. Geophys. Res. Space Phys. 106, 30363–30369 (2001). https://doi.org/10.1029/2001JA001107

    Article  ADS  Google Scholar 

  • Uma, G., Brahmanandam, P., Kakinami, Y., Dmitriev, A., Devi, N.L., Kiran, K.U., Prasad, D., Rao, P.R., Niranjan, K., Babu, C.S.: Ionospheric responses to two large geomagnetic storms over Japanese and Indian longitude sectors. J. Atmos. Sol.-Terr. Phys. 74, 94–110 (2012). https://doi.org/10.1016/j.jastp.2011.10.001

    Article  ADS  Google Scholar 

  • Unnikrishnan, K., Nair, R.B., Venugopal, C.: A comparative study of night-time enhancement of TEC at a low latitude station on storm and quiet nights including the local time, seasonal and solar activity dependence. Ann. Geophys. 20, 1843–1850 (2002)

    Article  ADS  Google Scholar 

  • Venkatesh, K., Fagundes, P., Prasad, D., Denardini, C., Abreu, A., Jesus, R., Gende, M.: Day-to-day variability of equatorial electrojet and its role on the day-to-day characteristics of the equatorial ionization anomaly over the Indian and Brazilian sectors. J. Geophys. Res. Space Phys. 120, 9117–9131 (2015). https://doi.org/10.1002/2015JA021307

    Article  ADS  Google Scholar 

  • Vijaya Lekshmi, D., Balan, N., Tulasi Ram, S., Liu, J.: Statistics of geomagnetic storms and ionospheric storms at low and mid latitudes in two solar cycles. J. Geophys. Res. Space Phys. 116, A11328 (2011). https://doi.org/10.1029/2011JA017042

    Article  ADS  Google Scholar 

  • Warnant, R., Pottiaux, E.: The increase of the ionospheric activity as measured by GPS. Earth Planets Space 52, 1055–1060 (2000). https://doi.org/10.1186/BF03352330

    Article  ADS  Google Scholar 

  • Woodman, R.F., La Hoz, C.: Radar observations of F region equatorial irregularities. J. Geophys. Res. 81, 5447–5466 (1976). https://doi.org/10.1029/JA081i031p05447

    Article  ADS  Google Scholar 

  • Wu, C.-C., Liou, K., Shan, S.-J., Tseng, C.-L.: Variation of ionospheric total electron content in Taiwan region of the equatorial anomaly from 1994 to 2003. Adv. Space Res. 41, 611–616 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the data centre of Kyoto University and OMNI web for providing the solar and geomagnetic storms indices as well as NASA OMNI web interface for solar wind parameters and IMF-Bz data. We also thank the reviewers for helpful comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arslan Tariq.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, M.A., Shah, M., Hernández-Pajares, M. et al. Ionospheric VTEC variations over Pakistan in the descending phase of solar activity during 2016–17. Astrophys Space Sci 364, 99 (2019). https://doi.org/10.1007/s10509-019-3591-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-019-3591-3

Keywords

Navigation