Skip to main content
Log in

Prediction of ionospheric vertical total electron content from GPS data using ordinary kriging-based surrogate model

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The total electron content (TEC) is the number of electrons present in a ray path between satellite and receiver. TEC affects the propagation of radio signal from satellite to receiver, which causes a ranging error. In the case of single frequency user receiver, the prediction of TEC helps to correct the range errors. TEC is measured using TEC unit (TECU), where \(1~\text{TECU} = 1 \times 10^{16}~\text{electrons}/\text{m}^{2}\). The vertical total electron content (VTEC) of the L1 band is estimated by using data collected from GPS receiver which is installed at the ACSCE station Bangalore. In this work, an ordinary kriging (OK)-based surrogate model algorithm and Matlab code is developed and used to predict the hourly basis ionospheric VTEC. Six parameters such as time, sun spot number (SSN), the solar flux index at 10.7 cm (F10.7), Kp and Ap and observed TEC are used to build the surrogate model. These parameters are related to the ionospheric diurnal variations, solar cycle and geomagnetic activities. In order to cover all regions of the world during different solar activity periods six input parameters are collected from low-, mid- and high-latitude regions during low, medium and high solar activity periods. The root mean square error (RMSE) of the OK-based surrogate model ranges from 0.6–3.6 TECU, and the correlation coefficient varies between 0.79–0.99 and range error varies from 0.04654–0.3017244 m at three regions.

The TEC prediction results from the OK-based surrogate model are compared with results obtained from (i) a genetic algorithm-based neural network (GA-NN), (ii) a back-propagation neural network (BP-NN) and (iii) the IRI-2012 model at the CHAN station. For a typical dataset the RMSE of the OK-based surrogate model is 4.523 TECU and the correlation coefficient is 0.9733. The RMSE values for the GA-NN, BP-NN and IRI-2012 models are 5.3529, 6.2913 and 6.7179 TECU and The correlation coefficients are 0.8343, 0.7869 and 0.7797, respectively. The OK model is also compared with a time series method for the CHAN station; it is observed that, for 3 days (7-1-2008 to 9-1-2008) prediction, the OK model gives a 75% result for \(\Delta \textit{TEC} <1~\text{TECU}\) condition, the time series method gives 39% for the same condition. The results indicate that the OK-based surrogate model is suitable for applications in ionospheric TEC predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  • Acharya, R., Roy, B., Sivaraman, M.R., Dasgupta, A.: Prediction of ionospheric total electron content using adaptive neural network with in-situ learning algorithm. Adv. Space Res. 47, 115–123 (2011)

    Article  ADS  Google Scholar 

  • Arikan, F., Erol, C.B., Arikan, O.: Regularized estimation of vertical total electron content from GPS data for a desired time period. IEEE (2004)

  • Arikan, F., Erol, C.B., Arikan, O.: Regularized estimation of TEC from GPS data for certain mid latitude stations and comparisons with IRI model. Adv. Space Res. 39(5), 867–874 (2007)

    Article  ADS  Google Scholar 

  • Badeke, R., Borries, C., Hoque, M.M., Minkwitz, D.: Empirical forecast of quiet time ionospheric Total Electron Content maps over Europe. Adv. Space Res. 61(12), 2881–2890 (2018)

    Article  ADS  Google Scholar 

  • Balu, R., Ulaganathan, S., Asproulis, N.: Effect of variogram types on surrogate model based optimisation of aircraft wing shapes. Proc. Eng. 38, 2713–2725 (2012)

    Article  Google Scholar 

  • Bilitza, D., McKinnell, L.-A., Reinisch, B., Fuller-Rowell, T.: The international reference ionosphere today and in the future. J. Geod. 85, 909–920 (2011)

    Article  ADS  Google Scholar 

  • Homam, M.J.: Prediction of total electron content of the ionosphere using neural network. UTM J. Technol. 78(5–8), 53–57 (2016)

    Google Scholar 

  • Kenpankho, P., Watthanasangmechai, K., Supnithi, P., Tsugawa, T., Maruyama, T.: Comparison of GPS TEC measurements with IRI TEC prediction at the equatorial latitude station, Chumphon, Thailand. Earth Planets Space 63, 365–370 (2011)

    Article  ADS  Google Scholar 

  • Krishnan, S.R., Seelamantula, C.S.: On the selection of optimum Savitzky-Golay filters. IEEE Trans. Signal Process. 61(2), 380–391 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Lanyi, G.E., Roth, T.: A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations. Radio Sci. 23, 483–492 (1998)

    Article  ADS  Google Scholar 

  • Li, X., Guo, D.: Modeling and prediction of ionospheric total electron content by time series analysis. In: 2nd International Conference on Advanced Computer Control. IEEE Press, New York (2010)

    Google Scholar 

  • Montagnac, M., Jouhaud, J.C., Sagaut, P., Laurenceau, J.: A surrogate-model based multidisciplinary shape optimization method with application to a 2d subsonic airfoil. Comput. Fluids 36, 520–529 (2007)

    Article  Google Scholar 

  • Mukesh, R., Lingadurai, K., Selvakumar, U.: Kriging methodology for surrogate-based airfoil shape optimization. Arab. J. Sci. Eng. 39(10), 7363–7373 (2014)

    Article  Google Scholar 

  • Murayama, M., Jeong, S., Yamamoto, K.: Efficient optimization design method using kriging model. J. Aircr. 42, 413–420 (2005)

    Article  Google Scholar 

  • Nayirl, H., Arikan, F., Arikan, O., Erol, C.B.: GPS/TEC estimation with IONOLAB method. 1-4244-1057-6/07, IEEE (2007)

  • Norsuzila, Y., Abdullah, M., Ismail, M., Ibrahim, M., Zakaria, Z.: Total electron content (TEC) and estimation of positioning error using Malaysia data. In: Proceedings of the World Congress on Engineering, vol. I, WCE 2010 (2010)

    Google Scholar 

  • Panda, S.K., Gedam, S.S., Shuanggen, J.: Ionospheric TEC Variations at Low Latitude Indian Region. IntechOpen, China (2015)

    Book  Google Scholar 

  • Poole, A.W.V., McKinnell, L.-A.: On the predictability of foF2 using neural networks. Radio Sci. 35, 225–234 (2000)

    Article  ADS  Google Scholar 

  • Radzol, A.R.M., Lee, K.Y., Mansor, W., Azman, A.: Optimization of Savitzky-Golay smoothing filter for salivary surface enhanced Raman spectra of non structural protein 1. IEEE (2014)

  • Sharma, K., Dabas, R.S., Ravindran, S.: Study of total electron content variations over equatorial and low latitude ionosphere during extreme solar minimum. Astrophys. Space Sci. 341(2), 277–286 (2012)

    Article  ADS  Google Scholar 

  • Shyy, Wei, Tushar, G., Vaidyanathan, R., Queipo, N.V., Haftka, R.T., Tucker, P.K.: Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41, 1–28 (2005)

    Article  Google Scholar 

  • Song, R., Zhang, X., Zhou, C., Liu, J., He, J.: Predicting TEC in China based on the neural networks optimized by genetic algorithm. Adv. Space Res. 62, 745–759 (2018)

    Article  ADS  Google Scholar 

  • Srilatha Indira Dutt, V.B.S., Gowsuddin, S.: Ionospheric delay estimation using Klobuchar algorithm for single frequency GPS receivers. Int. J. Adv. Res. Electron. Commun. Eng. 2, 202–207 (2013)

    Google Scholar 

  • Sun, S., Egerstedt, M.B., Martin, C.F.: Control theoretic smoothing splines. IEEE Trans. Autom. Control 45(12), 2271–2279 (2000)

    Article  MathSciNet  Google Scholar 

  • Wu, W.-C., Wang, T.-H., Chiu, C.-T.: Edge curve scaling and smoothing with cubic spline interpolation for image up scaling. In: IEEE Workshop on Signal Processing Systems (2013)

    Google Scholar 

  • Ya’acob, N., Abdullah, M., Ismail, M.: GPS total electron content (TEC) prediction at ionosphere layer over the equatorial region. In: Bouras, C.J. (ed.) Trends in Telecommunications Technologies. IntechOpen, Europe (2010)

    Google Scholar 

Download references

Acknowledgement

The research work presented in this paper has been carried out under the project entitled “Surrogate model for ionospheric studies using IRNSS/GPS Data”, funded by SAC, ISRO, Ahmadabad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mukesh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukesh, R., Soma, P., Karthikeyan, V. et al. Prediction of ionospheric vertical total electron content from GPS data using ordinary kriging-based surrogate model. Astrophys Space Sci 364, 15 (2019). https://doi.org/10.1007/s10509-019-3502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-019-3502-7

Keywords

Navigation