Skip to main content
Log in

Density variation effect on multi-ions with kinetic Alfven wave around cusp region—a kinetic approach

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The kinetic Alfven waves in the presence of homogeneous magnetic field plasma with multi-ions effect are investigated. The dispersion relation and normalised damping rate are derived for low-\(\beta\) plasma using kinetic theory. The effect of density variation of \(\text{H}^{+}\), \(\text{He}^{+}\) and \(\text{O}^{+}\) ions is observed on frequency and damping rate of the wave. The variation of frequency (\(\omega\)) and normalised damping rate (\(\gamma / \varOmega_{H^{ +}} \)) of the wave are studied with respect to \(k_{ \bot} \rho_{j}\), where \(k_{ \bot} \) is the perpendicular wave number, \(\rho_{j}\) is the ion gyroradius and \(j \) denotes \(\text{H}^{+}\), \(\text{He}^{+}\) and \(\text{O}^{+}\) ions. The variation with \(k_{ \bot} \rho_{j}\) is considered over wide range. The parameters appropriate to cusp region are used for the explanation of results. It is found that with hydrogen and helium ions gyration, the frequency of wave is influenced by the density variation of \(\text{H}^{+}\) and \(\text{He}^{+}\) ions but remains insensitive to the change in density of \(\text{O}^{+}\) ions. For oxygen ion gyration, the frequency of wave varies over a short range only for \(\text{O}^{+}\) ion density variation. The wave shows damping at lower altitude due to variation in density of lighter \(\text{H}^{+}\) and \(\text{He}^{+}\) ions whereas at higher altitude only heavy \(\text{O}^{+}\) ions contribute in wave damping. The damping of wave may be due to landau damping or energy transfer from wave to particles. The present study signifies that the both lighter and heavier ions dominate differently to change the characteristics of kinetic Alfven wave and density variation is also an important parameter to understand wave phenomena in cusp region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agarwal, P., Varma, P., Tiwari, M.S.: Effect of electron and ion temperature ratio on kinetic Alfven wave with homogeneous plasma by kinetic approach. Indian J. Pure Appl. Phys. 49, 91 (2011a)

    Google Scholar 

  • Agarwal, P., Varma, P., Tiwari, M.S.: Study of inertial kinetic Alfven waves around cusp region. Planet. Space Sci. 59, 306 (2011b). doi:10.1016/j.pss.2010.11.006

    Article  ADS  Google Scholar 

  • Agarwal, P., Varma, P., Tiwari, M.S.: Study of gradient effects on kinetic Alfven wave with inhomogeneous plasma. Astrophys. Space Sci. 345, 99 (2013). doi:10.1007/s10509-013-1376-7

    Article  ADS  MATH  Google Scholar 

  • Ahirwar, G., Varma, P., Tiwari, M.S.: Study of electromagnetic ion cyclotron waves with general loss-cone distribution and multi-ions plasma–particle aspect approach. Indian J. Pure Appl. Phys. 48, 334 (2010)

    Google Scholar 

  • Arvelius, S.: Energization and Acceleration of Dayside Polar Outflowing Oxygen. Ph.D. Thesis, Swedish Institute of Space Physics (2005). ISSN 0284-1703, ISBN 91-7305-963-3

  • Baronia, A., Tiwari, M.S.: Kinetic Alfven wave in the presence of loss cone distribution function in inhomogeneous magnetoplasma-particle aspect approach. Planet. Space Sci. 47, 1111 (1999). doi:10.1016/S0032-0633(99)00029-X

    Article  ADS  Google Scholar 

  • Blecki, J., Wronowski, R., Savin, S., Coenilleau Wehrlin, N., Parrot, M., Nemecek, Z., Safarankowa, J., Santolik, O., Kudela, K., Sauvaud, J.A.: Low frequency plasma waves in the outer polar cusp a review of observations from Prognoz 8, Interball 1, Magion 4 and Cluster. Surv. Geophys. 26, 177 (2005)

    Article  ADS  Google Scholar 

  • Bouhram, M., Dubouloz, N., Malingre, M., Jasperse, J.R., Pottelette, R., Senior, C., Delcourt, D., Carlson, C.W., Roth, L., Berthomier, M., Sauvaud, J.-A.: Ion outflow and associated perpendicular heating in the cusp observed by Interball Auroral Probe and Fast Auroral Snapshot. J. Geophys. Res. 107(A2), 1023 (2002). doi:10.1029/2001JA000091

    Article  Google Scholar 

  • Chaston, C.C., Bonnell, J.W., Carlson, C.W., Mcfadden, J.P., Ergun, R.E., Strangeway, R.G.: Properties of small-scale Alfven waves and accelerated electrons from FAST. J. Geophys. Res. 108, A4 (2003). doi:10.1029/2002JA009420

    Google Scholar 

  • Chen, L., Wu, D.J.: Kinetic Alfven wave instability driven by field-aligned currents in solar coronal loops. Astrophys. J. 754, 123 (2012). doi:10.1088/0004-637X/754/2/123

    Article  ADS  Google Scholar 

  • Chen, L., Wu, D.J., Huang, J.: Kinetic Alfven wave instability driven by field aligned currents in a low \(\beta\) plasma. J. Geophys. Res. 118, 2951 (2013). doi:10.1002/jgra.50332

    Article  Google Scholar 

  • Dai, L., Wang, C., Zhang, Y., Lavraud, B., Burch, J., Pollock, C., Torbert, R.B.: Kinetic Alfven wave explanation of the Hall fields in magnetic reconnection. Geophys. Res. Lett. 44, 634 (2017). doi:10.1002/2016GL071044

    Article  ADS  Google Scholar 

  • Davidson, R.C.: In: Rosenbluth, M.N., Sagdeev, R.Z. (eds.) Handbook of Plasma Physics—Basic Plasma Physics, vol. 1, pp. 521–525. North Holland, Amsterdam (1983)

    Google Scholar 

  • Duan, S.P., Li, Z.: Kinetic Alfven wave driven by density and magnetic field inhomogeneities in plasmas of finite\(\beta\). Chin. Astron. Astrophys. 29, 1 (2005). doi:10.1016/j.chinastron.2005.01.001

    Article  ADS  Google Scholar 

  • Duan, S.P., Dai, L., Wang, C., Liang, J., Lui, A.T.Y., Chen, L.J., He, Z.H., Zhang, Y.C., Angelopoulos, V.: Evidence of kinetic Alfvén eigenmode in the near-Earth magnetotail during substorm expansion phase. J. Geophys. Res. Space Phys. 121, 4316 (2016). doi:10.1002/2016JA022431

    Article  ADS  Google Scholar 

  • Dwivedi, A.K., Varma, P., Tiwari, M.S.: Kinetic Alfven wave in the inhomogeneous magnetosphere and general distribution function. Planet. Space Sci. 49, 993 (2001). doi:10.1016/S0032-0633(01)00008-3

    Article  ADS  Google Scholar 

  • Dwivedi, A.K., Kumar, S., Tiwari, M.S.: Effect of ion and electron beam on kinetic Alfven wave in an inhomogeneous magnetic field. Astrophys. Space Sci. 350, 547 (2014). doi:10.1007/s10509-013-1760-3

    Article  ADS  Google Scholar 

  • Engebretson, M.J., Kahlstorf, C.R.G., Murr, D.L., Posch, J.L., Keiling, A., Lavraud, B., Rème, H., Lessard, M.R., Kim, E.-H., Johnson, J.R., Dombeck, J., Grison, B., Robert, P., Glassmeier, K.-H., Décréau, P.M.E.: Cluster observations of band-limited Pc 1 waves associated with streaming \(\text{H}^{+}\) and \(\text{O}^{+}\) ions in the high-altitude plasma mantle. J. Geophys. Res. 117, A10219 (2012). doi:10.1029/2012JA017982

    Article  ADS  Google Scholar 

  • Fritz, T.A., Chen, J., Sheldon, R.B., Spence, H.E., Fennell, J.F., Livi, S., Russell, C.T., Pickett, J.S.: Cusp energetic particle events measured by POLAR spacecraft. Phys. Chem. Earth (C) 24(1–3), 135–140 (1999)

    Google Scholar 

  • Fuselier, S.A., Klumpar, D.M., Shelley, E.G.: Ion reflection and transmission during reconnection at the Earth’s subsolar magnetopause. Geophys. Res. Lett. 18, 139 (1991). doi:10.1029/90GL02676

    Article  ADS  Google Scholar 

  • Gershman, D.J., Vinas, A.F., Dorelli, J.C., Boardsen, S.A., Avanov, L.A., Bellan, P.M., Schwartz, S.J., Lavraud, B., Coffey, V.N., Chandler, M.O., Saito, Y., Paterson, W.R., Fuselier, S.A., Ergun, R.E., Strangeway, R.J., Russell, C.T., Giles, B.L., Pollock, C.J., Torbert, R.B., Burch, J.L.: Wave-particle energy exchange directly observed in a kinetic Alfven-branch wave. Nat. Commun. 8, 14719 (2017). doi:10.1038/Ncomms14719

    Article  ADS  Google Scholar 

  • Gomberoff, L., Neira, R.: Convective growth rate of ion cyclotron waves in a \(\text{H}^{+}\)/\(\text{He}^{+}\) and \(\text{H}^{+}\)/\(\text{He}^{+}\)/\(\text{O}^{+}\) plasma. J. Geophys. Res. 88(A3), 2170 (1983). doi:10.1029/JA088iA03p02170

    Article  ADS  Google Scholar 

  • Grison, B.C., Escoubet, P., Santolík, O., Cornilleau-Wehrlin, N., Khotyaintsev, Y.: Wave number determination of Pc 1–2 mantle waves considering He++ ions: a cluster study. J. Geophys. Res. Space Phys. 119, 7601 (2014). doi:10.1002/2013JA019719

    Article  ADS  Google Scholar 

  • Haaland, S., Eriksson, A., André, M., Maes, L., Baddeley, L., Barakat, A., Chappell, R., Eccles, V., Johnsen, C., Lybekk, B., Li, K., Pedersen, A., Schunk, R., Welling, D.: Estimation of cold plasma outflow during geomagnetic storms. J. Geophys. Res. Space Phys. 120, 10622–10639 (2015). doi:10.1002/2015JA021810

    Article  ADS  Google Scholar 

  • Hasegawa, A., Chen, L.: Kinetic process of plasma heating due to Alfven wave excitation. Phys. Rev. Lett. 35(6), 370 (1975). doi:10.1103/PhysRevLett.35.370

    Article  ADS  Google Scholar 

  • Johnson, R.G., Sharp, R.D., Shelley, E.G.: The discovery of energetic He+ ions in the magnetosphere. J. Geophys. Res. 79, 22 (1974). doi:10.1029/JA079i022p03135

    Google Scholar 

  • Kervalishvili, G.N., Lühr, H.: The relationship of thermospheric density anomaly with electron temperature, small-scale FAC, and ion up-flow in the cusp region, as observed by CHAMP and DMSP satellites. Ann. Geophys. 31, 541 (2013). doi:10.5194/angeo-31-541-2013

    Article  ADS  Google Scholar 

  • Klimushkin, D.Y., Mager, P.N.: The Alfvén wave parallel electric field in non-uniform space plasmas. Astrophys. Space Sci. 350, 579 (2014). doi:10.1007/s10509-013-1774-x

    Article  ADS  Google Scholar 

  • Liang, J., Lin, Y., Johnson, J.R., Wang, Z.-X., Wang, X.: Ion acceleration and heating by kinetic Alfvén waves associated with magnetic reconnection. Phys. Plasmas 24, 102110 (2017). doi:10.1063/1.4991978

    Article  ADS  Google Scholar 

  • Lysak, R.L., Lotko, W.: On the kinetic dispersion relation for shear Alfven waves. J. Geophys. Res. 101(A3), 5085 (1996). doi:10.1029/95JA03712

    Article  ADS  Google Scholar 

  • McFadden, J.P., Carlson, C.W., Strangeway, R., Moebius, E.: Observations of downgoing velocity dispersed \(\text{O}^{+}\) and \(\text{He}^{+}\) in the cusp during magnetic storms. Geophys. Res. Lett. 30, 18 (2003). doi:10.1029/2003GL017783

    Article  Google Scholar 

  • Nilsson, H., Waara, M., Arvelius, S., Marghitu, O., Bouhram, M., Hobara, Y., Yamauchi, M., Lundin, R., Rˋeme, H., Sauvaud, J-A., Dandouras, I., Balogh, A., Kistler, L.M., Klecker, B., Carlson, C.W., Bavassano-Cattaneo, M.B., Korth, A.: Characteristics of high altitude oxygen ion energisation and outflow as observed by Cluster: a statistical study. Ann. Geophys. 24, 1099 (2006). doi:10.5194/angeo-24-1099-2006

    Article  ADS  Google Scholar 

  • Patel, S., Varma, P., Tiwari, M.S.: Electromagnetic ion cyclotron waves in multi-ions hot anisotropic plasma in auroral acceleration region–particle aspect approach. Earth Moon Planets 109, 29 (2012). doi:10.1007/s11038-012-9400-4

    Article  ADS  Google Scholar 

  • Peterson, W.K., Yau, A.W., Whalen, B.A.: Simultaneous observations of \(\text{H}^{+}\) and \(\text{O}^{+}\) ions at two altitudes by the Akebono and Dynamics Explorer 1 Satellites. J. Geophys. Res. 98(A7), 117 (1993). doi:10.1029/92JA00207

    Article  Google Scholar 

  • Raikwar, B.D., Varma, P., Tiwari, M.S.: Effect of density and general distribution function on Electrostatic Ion Cyclotron waves with multi-ions plasma. Asian J. Sci. Innov. Res. 1, 21 (2016)

    Google Scholar 

  • Sharma, R.P., Goyal, R., Gaur, N., Scime, E.E.: Linear kinetic Alfven waves in inhomogeneous plasma: effects of Landau damping. Europhys. Lett. 113, 25001 (2016). doi:10.1209/0295-5075/113/25001

    Article  ADS  Google Scholar 

  • Shelley, E.G., Sharp, R.D., Johnson, R.G.: \(\text{He}^{++}\) and \(\text{H}^{+}\) flux measurements in the day side cusp: estimates of convection electric field. J. Geophys. Res. 81, 13 (1976). doi:10.1029/JA081i013p02363

    Article  Google Scholar 

  • Shukla, N., Mishra, R., Varma, P., Tiwari, M.S.: Kinetic model of Alfven wave in dusty plasma. Indian J. Pure Appl. Phys. 44, 834 (2006)

    Google Scholar 

  • Shukla, N., Mishra, R., Varma, P., Tiwari, M.S.: Ion and electron beam effects on kinetic Alfven wave with general loss-cone distribution function-kinetic approach. Plasma Phys. Control. Fusion 50, 025001 (2008). doi:10.1088/0741-3335/50/2/025001

    Article  ADS  Google Scholar 

  • Shukla, N., Varma, P., Tiwari, M.S.: Study of kinetic Alfven wave (KAW) in plasma sheet boundary layer. J. Phys. Conf. Ser. 208, 012033 (2010). doi:10.1088/1742-6596/208/1/012033

    Article  Google Scholar 

  • Sundkvist, D., Vaivads, A., Andr´e, M., Wahlund, J.-E., Hobara, Y., Joko, S., Krasnoselskikh, V.V., Bogdanova, Y.V., Buchert, S.C., Cornilleau-Wehrlin, N., Fazakerley, A., Hall, J.-O., Rˋeme, H., Stenberg, G.: Multi-spacecraft determination of wave characteristics near the proton gyrofrequency in high-altitude cusp. Ann. Geophys. 23, 983–995 (2005)

    Article  ADS  Google Scholar 

  • Tiwari, M.S., Rostoker, G.: Field aligned currents and auroral acceleration by non-linear MHD waves. Planet. Space Sci. 32(12), 1497 (1984). doi:10.1016/0032-0633(84)90016-3

    Article  ADS  Google Scholar 

  • Venugopal, C., Devi, E.S., Jayapal, R., Samuel, G., Antony, S., Renuka, G.: The influence of negatively charged heavy ions on the kinetic Alfven wave in a cometary environment. Astrophys. Space Sci. 339, 157 (2012). doi:10.1007/s10509-011-0970-9

    Article  ADS  MATH  Google Scholar 

  • Venugopal, C., Jayapal, R., Sreekala, G., Jose, B., Devi, E.S., Antony, S.: Dispersion characteristics of kinetic Alfven waves in a multi-ions plasma. Phys. Scr. 89, 065604 (2014)

    Article  ADS  Google Scholar 

  • Zhang, T.X., Li, B.: A kinetic model for resonant heating of ions by Alfvén waves in laboratory plasmas. Phys. Plasmas 11(5), 2172 (2004). doi:10.1063/1.1689968

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author Radha Tamrakar is thankful to the UGC, New Delhi and P. Varma is thankful to DST for the financial assistances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Varma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamrakar, R., Varma, P. & Tiwari, M.S. Density variation effect on multi-ions with kinetic Alfven wave around cusp region—a kinetic approach. Astrophys Space Sci 363, 9 (2018). https://doi.org/10.1007/s10509-017-3224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-017-3224-7

Keywords

Navigation