Skip to main content
Log in

Sitnikov problem in the square configuration: elliptic case

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

This paper is extension to the classical Sitnikov problem, when the four primaries of equal masses lie at the vertices of a square for all time and moving in elliptic orbits around their center of mass of the system, the distances between the primaries vary with time but always in such a way that their mutual distances remain in the same ratio. First we have established averaged equation of motion of the Sitnikov five-body problem in the light of Jalali and Pourtakdoust (Celest. Mech. Dyn. Astron. 68:151–162, 1997), by applying the Van der Pol transformation and averaging technique of Guckenheimer and Holmes (Nonlinear oscillations, dynamical system bifurcations of vector fields, Springer, Berlin, 1983). Next the Hamiltonian equation of motion has been solved with the help of action angle variables \(I\) and \(\phi\). Finally the periodicity and stability of the Sitnikov five-body problem have been examined with the help of Poincare surfaces of section (PSS). It is shown that chaotic region emerging from the destroyed islands, can easily be seen by increasing the eccentricity of the primaries to \(e = 0.21\). It is valid for bounded small amplitude solutions \(z_{\mathrm{max}} ( z_{\mathrm{max}} = 0.65 )\) and \(0 \le e < 0.3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Belbruno, E., Llibre, J., Olle, M.: On the families of periodic orbits which bifurcate from the circular Sitnikov motions. Celest. Mech. Dyn. Astron. 60, 99–129 (1994)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Berdichevsky, V., Ozbek, O., Kim, W.W.: Thermodynamics of Duffing’s oscillator. ASME J. Appl. Mech. 61, 670–675 (1994)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Brouwer, D., Clemence, G.M.: Methods of Celestial Mechanics. Academic Press, New York (1961)

    MATH  Google Scholar 

  • Conley, C.C.: On the ultimate behaviour of orbits with respect to an unstable critical point I, oscillating, asymptotic and capture orbits. J. Differ. Equ. 5, 136–158 (1969)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Chasley, S.R.: A global analysis of the regularized Sitnikov problem. Celest. Mech. Dyn. Astron. 73, 291–302 (1999)

    Article  ADS  Google Scholar 

  • Corbera, M., Llibre, J.: Periodic orbits of the Sitnikov problem via a Poincare map. Celest. Mech. Dyn. Astron. 77, 273–303 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Davis, H.T.: Introduction to Nonlinear Differential and Integral Equations. Dover, New York (1962)

    Google Scholar 

  • Douskos, C., Kalantonis, V., Markellos, P., Perdios, E.: On Sitnikov-like motions generating new kinds of 3-d periodic orbits in the restricted three-body problem with prolate primaries. Astron. Astrophys. 337, 99–106 (2012)

    MATH  Google Scholar 

  • Dvorak, R., Sun, Y.S.: Phase space structure of the extended Sitnikov problem. Celest. Mech. Dyn. Astron. 67, 87–106 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Faruque, S.B.: Axial oscillation of a planetoid in the restricted three-body problem: the circular case Sitnikov problem. Bull. Astron. Soc. India 30, 895–909 (2002)

    ADS  Google Scholar 

  • Faruque, S.B.: Solution of the Sitnikov problem. Celest. Mech. Dyn. Astron. 87, 353–369 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Guckenheimer, J., Holmes, P.: Nonlinear Oscillation, Dynamical System Bifurcations of Vector Fields. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  • Hagel, J.: A new analytical approach to the Sitnikov problem. Celest. Mech. Dyn. Astron. 53, 267–292 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Jalali, M.A., Pourtakdoust, S.H.: Regular and chaotic solutions of the Sitnikov problem near the 3/2 commensurability. Celest. Mech. Dyn. Astron. 68, 151–162 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Lara, L.J., Buendia, A.E.: Symmetries and bifurcations in the Sitnikov problem. Celest. Mech. Dyn. Astron. 79, 97–117 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Liu, J., Sun, Y.S.: On the Sitnikov problem. Celest. Mech. Dyn. Astron. 49, 285–302 (1990)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • MacMillan, W.D.: An integrable case in the restricted problem of three-body. Astron. J. 27, 11–13 (1913)

    Article  ADS  Google Scholar 

  • Moser, J.: Stable and Random Motions in Dynamical System. Princeton University Press, Princeton (1973)

    MATH  Google Scholar 

  • Pandey, L.P., Ahmad, I.: Periodic orbits and bifurcation in the Sitnikov four-body problem when all the primaries are oblate. Astron. Astrophys. 345, 73–83 (2013)

    Google Scholar 

  • Pavanini, G.: Sopra una nuova categoria di soluzioni periodiche nel problema di tre corpi. Annali di Mathematica Pura ed Applicata, serie iii, vol. xiii, pp. 179–202 (1907)

    MATH  Google Scholar 

  • Perdios, E.A.: The manifolds of families of 3-D periodic orbits associated to Sitnikov motions in the restricted three-body problem. Celest. Mech. Dyn. Astron. 99(2), 85–104 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Perdios, E.A., Kalantonis, V.S.: Self-resonant bifurcations of the Sitnikov family and the appearance of 3-D isolas in the restricted three-body problem. Celest. Mech. Dyn. Astron. 113, 377–386 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  • Perdios, E., Markellos, V.V.: Stability and bifurcations of Sitnikov motions. Celest. Mech. Dyn. Astron. 42, 187–200 (1988)

    Article  MathSciNet  Google Scholar 

  • Rahman, M.A., Garain, D.N., Hassan, M.R.: Solution and stability of Sitnikov restricted three-body problem when the primaries are sources of radiation int. J. Appl. Math. Mech. 10(11), 21–36 (2014)

    Google Scholar 

  • Shahbaz Ullah, M., Hassan, M.R.: Connection between three-body configuration and four-body configuration of the Sitnikov problem when one of the masses approaches zero: circular case. Astron. Astrophys. 353(1), 53–64 (2014a)

    Google Scholar 

  • Shahbaz Ullah, M., Hassan, M.R.: Sitnikov cyclic configuration of \(N + 1\)-body problem. Astron. Astrophys. 354(2), 327–337 (2014b)

    Google Scholar 

  • Shahbaz Ullah, M., Bhatnagar, K.B., Hassan, M.R.: Sitnikov problem in the cyclic kite configuration. Astron. Astrophys. 354(2), 301–309 (2014)

    Google Scholar 

  • Shahbaz Ullah, M., Majda, B., Zafar Ullah, M., Shahnawaz Ullah, M.: Series solutions of the Sitnikov restricted \(N + 1\)-body problem: elliptic case. Astron. Astrophys. 357(2), 1–9 (2015)

    Google Scholar 

  • Sitnikov, K.A.: Existence of oscillating motion for the three-body problem. Dokl. Akad. Nauk SSSR 133(2), 303–306 (1960)

    MathSciNet  Google Scholar 

  • Soulis, P.S., Bountis, T., Dvorak, R.: Stability of motion in the Sitnikov three-body problem. Celest. Mech. Dyn. Astron. 99, 129–148 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Soulis, P.S., Papadakis, K.E., Bountis, T.: Periodic orbits and bifurcations in the Sitnikov four-body problem. Celest. Mech. Dyn. Astron. 100, 251–266 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Stumpff, K.: Himmelsmechanik, band ii, pp. 73–79. Veb Deutscher Verlag der Wissenschaften, Berlin (1965)

    MATH  Google Scholar 

  • Suraj, M.S., Hassan, M.R.: Sitnikov problem: it’s extension to four-body problem. Proc. Pac. Acad. Sci. 48(2), 117–126 (2011)

    MathSciNet  Google Scholar 

  • Suraj, M.S., Hassan, M.R.: Solution of Sitnikov restricted four-body problem when all the primaries are oblate bodies: circular case. Proc. Pac. Acad. Sci. 50(1), 61–69 (2013)

    MathSciNet  Google Scholar 

  • Suraj, M.S., Hassan, M.R.: Sitnikov restricted four-body problem with radiation pressure. Astron. Astrophys. 349, 705–716 (2014)

    Google Scholar 

  • Suraj, M.S., Hassan, M.R., Bhatnagar, K.B.: Averaging the equation of motion of Sitnikov restricted four-body problem. Glob. Sci. Technol., 17–22 (2010a)

  • Suraj, M.S., Hassan, M.R., Bhatnagar, K.B.: Sitnikov problem: its extension to four-body problem when all the primaries are source of radiation pressure. Glob. Sci. Technol., 158–164 (2010b)

Download references

Acknowledgements

The author is very grateful to the referee for his constructive comments to revise the manuscript. The author also thankful to C.F.R.S.C. for giving academic support for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shahbaz Ullah.

Appendix

Appendix

First we expand the right hand side of Eq. (2) and then by putting the values of \(r_{1} ( t ), r_{2} ( t ), r_{3} ( t ),\ldots\) . in the same equation, we get

$$\begin{aligned} r ( t )^{ - 3} =& a^{ - 3} \biggl[ 1 + \biggl\{ - e \cos t + \frac{e^{2}}{2} ( 1 - \cos2t ) \\ &{}+ \frac{3e^{3}}{8} ( \cos t - \cos3t )\\ &{} + \frac{e^{4}}{3} ( \cos2t - \cos4t ) +\cdots\biggr\} \biggr]^{ - 3}. \end{aligned}$$

Multiplying \(z\) on both sides and applying the Binomial theorem, we get

$$\begin{aligned} r ( t )^{ - 3}z =& a^{ - 3} \biggl[ 1 + ( - 3 ) \biggl\{ - e \cos t + \frac{e^{2}}{2} ( 1 - \cos2t )\\ &{} + \frac{3e^{3}}{8} ( \cos t - \cos3t ) + \frac{e^{4}}{3} ( \cos2t - \cos4t ) \biggr\} \\ &{}+ 6 \biggl\{ - e \cos t + \frac{e^{2}}{2} ( 1 - \cos2t )\\ &{} + \frac{3e^{3}}{8} ( \cos t - \cos 3t ) + \frac{e^{4}}{3} ( \cos2t - \cos4t ) \biggr\} ^{2} \\ &{}- 10 \biggl\{ - e \cos t + \frac{e^{2}}{2} ( 1 - \cos2t )\\ &{} + \frac{3e^{3}}{8} ( \cos t - \cos3t ) + \frac{e^{4}}{3} ( \cos2t - \cos4t ) \biggr\} ^{3} \\ &{}+ 15 \biggl\{ - e \cos t + \frac{e^{2}}{2} ( 1 - \cos2t ) \\ &{}+ \frac{3e^{3}}{8} ( \cos t - \cos3t ) + \frac{e^{4}}{3} ( \cos2t - \cos4t ) \biggr\} ^{4}\\ &{} +\cdots \biggr]z. \end{aligned}$$

Solving the above equation and taking the terms proportional to \(e^{\alpha'}z^{\alpha''} ( \alpha' + \alpha'' \le5 )\), we get

$$\begin{aligned} r ( t )^{ - 3}z =& a^{ - 3} \biggl[ 1 + 3e \cos t - \frac{3e^{2}}{2} ( 1 - \cos2t ) + 6e^{2}\cos^{2}t\\ &{} - \frac{9e^{3}}{8} ( \cos t - \cos3t ) - 6e^{3}\cos t ( 1 - \cos2t ) \\ &{}+ 10e^{3}\cos^{3}t - e^{4} ( \cos2t - \cos4t )\\ &{}+ \frac{3e^{4}}{2} ( 1 - \cos2t )^{2} - 15e^{4} \cos^{2}t ( 1 - \cos2t ) \\ &{}+ 15e^{4}\cos^{4}t - \frac{9e^{4}}{2}\cos t ( \cos t - \cos3t ) \biggr]z. \end{aligned}$$

Let us transform the higher power of the cosine function in linear form as

$$\begin{aligned} r ( t )^{ - 3}z =& a^{ - 3} \biggl[ 1 + \frac{3e^{2}}{2} + \frac{15e^{4}}{8} + 3e \cos t + \frac{9e^{2}}{2}\cos2t\\ &{} + \frac{27e^{3}}{8}\cos t + \frac{53e^{3}}{8}\cos3t \\ &{}+ \frac{7e^{4}}{2}\cos2t + \frac{77e^{4}}{8}\cos4t \biggr]z. \end{aligned}$$

Putting the semi major axis \(a = 1/\sqrt{2}\) in the above equation one can find \(\varpi^{2}\) and \(f_{1} ( t )\).

$$\begin{aligned} r ( t )^{ - 3}z =& \biggl[ 2\sqrt{2} + 3\sqrt{2} e^{2} + \frac{15\sqrt{2} e^{4}}{4} + 6\sqrt{2} e \cos t\\ &{} + 9\sqrt{2} e^{2}\cos2t + \frac{27\sqrt{2} e^{3}}{4}\cos t\\ &{} + \frac{53\sqrt{2} e^{3}}{4}\cos3t + 7\sqrt{2} e^{4}\cos 2t \\ &{}+ \frac{77\sqrt{2} e^{4}}{4}\cos4t \biggr]z. \end{aligned}$$

Following the same procedure for the third term of Eq. (3), one can easily find \(f_{2} ( t )\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahbaz Ullah, M. Sitnikov problem in the square configuration: elliptic case. Astrophys Space Sci 361, 171 (2016). https://doi.org/10.1007/s10509-016-2654-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2654-y

Keywords

Navigation