Skip to main content
Log in

On the periodic solutions of a rigid dumbbell satellite in a circular orbit

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The aim of the present paper is to provide sufficient conditions for the existence of periodic solutions of the perturbed attitude dynamics of a rigid dumbbell satellite in a circular orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buică, A., Françoise, J.P., Llibre, J.: Periodic solutions of nonlinear periodic differential systems with a small parameter. Commun. Pure Appl. Anal. 6, 103–111 (2007)

    MathSciNet  MATH  Google Scholar 

  • de Bustos, M.T., Guirao, J.L.G., Vera, J.A., Vigo-Aguiar, J.: Periodic orbits and \(\mathcal{C}^{1}\)-integrability in the planar Stark–Zeeman problem. J. Math. Phys. 53, 082701 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  • Guirao, J.L.G., Llibre, J., Vera, J.A.: Generalized van der Waals Hamiltonian: periodic orbits and C 1 nonintegrability. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 85, 036603 (2012)

    Article  ADS  Google Scholar 

  • Guirao, J.L.G., Llibre, J., Vera, J.A.: On the dynamics of the rigid body with a fixed point: periodic orbits and integrability. Nonlinear Dyn. (2013). doi:10.1007/s11071-013-0797-8

    MATH  Google Scholar 

  • Malkin, I.G.: Some Problems of the Theory of Nonlinear Oscillations. Gosudarstv. Izdat. Tehn.-Teor. Lit, Moscow (1956). In Russian

    MATH  Google Scholar 

  • Roseau, M.: Vibrations Non Linéaires et Théorie de la Stabilité. Springer Tracts in Natural Philosophy, vol. 8. Springer, Berlin (1966). In French

    MATH  Google Scholar 

  • Vera, J.A.: Dynamics of a triaxial gyrostat at a Lagrangian equilibrium of a binary asteroid. Astrophys. Space Sci. 323(4), 375–382 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Vera, J.A.: On the dynamics of a gyrostat on Lagrangian equilibria in the three body problem. Multibody Syst. Dyn. 23(3), 263–291 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by MICINN/FEDER grant number MTM2011–22587.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan L. G. Guirao.

Appendix: Basic results on averaging theory

Appendix: Basic results on averaging theory

In this appendix we present the basic result from the averaging theory that we shall need for proving the main results of this paper.

We consider the problem of the bifurcation of T-periodic solutions from differential systems of the form

$$ \dot{\mathbf{x}}(t)= G_{0}(t,\mathbf{x})+\varepsilon G_{1}(t,\mathbf{x})+\varepsilon^{2} G_{2}(t, \mathbf{x}, \varepsilon), $$
(11)

with ε=0 to ε≠0 sufficiently small. Here the functions \(G_{0},G_{1}: \mathbb{R} \times\varOmega\to\mathbb{R} ^{n}\) and \(G_{2}:\mathbb{R} \times\varOmega\times(-\varepsilon_{0},\varepsilon _{0})\to\mathbb{R} ^{n}\) are \(\mathcal{C}^{2}\) functions, T-periodic in the first variable, and Ω is an open subset of \(\mathbb{R} ^{n}\). The main assumption is that the unperturbed system

$$ \dot{\mathbf{x}}(t)= G_{0}(t,\mathbf{x}), $$
(12)

has a submanifold of periodic solutions.

Let x(t,z,ε) be the solution of the system (12) such that x(0,z,ε)=z. We write the linearization of the unperturbed system along a periodic solution x(t,z,0) as

$$ \dot{\mathbf{y}}(t)=D_{\mathbf{x}}{G_{0}}\bigl(t,\mathbf{x}(t, \mathbf{z} ,0)\bigr)\mathbf{y}. $$
(13)

In what follows we denote by M z (t) some fundamental matrix of the linear differential system (13), and by \(\xi:\mathbb {R}^{k}\times\mathbb{R}^{n-k}\rightarrow\mathbb{R}^{k}\) the projection of \(\mathbb{R}^{n}\) onto its first k coordinates; i.e. ξ(x 1,…,x n )=(x 1,…,x k ).

We assume that there exists a k-dimensional submanifold \(\mathcal {Z}\) of Ω filled with T-periodic solutions of (12). Then an answer to the problem of bifurcation of T-periodic solutions from the periodic solutions contained in \(\mathcal{Z}\) for system (11) is given in the following result.

Theorem 6

Let V be an open and bounded subset of \(\mathbb{R} ^{k}\), and let \(\beta: {\mathrm{Cl}}(V)\to\mathbb{R} ^{n-k}\) be a \(\mathcal{C}^{2}\) function. We assume that

  1. (i)

    \(\mathcal{Z}= \{ \mathbf{z}_{\alpha}= ( \alpha, \beta(\alpha) ) ,\ \alpha\in{\mathrm{Cl}}(V) \} \subset\varOmega\) and that for each \(\mathbf{z}_{\alpha}\in\mathcal {Z}\) the solution x(t,z α ) of (12) is T-periodic;

  2. (ii)

    for each \(\mathbf{z}_{\alpha}\in\mathcal{Z}\) there is a fundamental matrix \(M_{\mathbf{z}_{\alpha}}(t)\) of (13) such that the matrix \(M_{\mathbf{z}_{\alpha}}^{-1}(0)- M_{\mathbf{z}_{\alpha }}^{-1}(T)\) has in the upper right corner the k×(nk) zero matrix, and in the lower right corner a (nk)×(nk) matrix Δ α with det(Δ α )≠0.

We consider the function \(\mathcal{G} :{\mathrm{Cl}}(V) \to \mathbb{R} ^{k}\)

$$ \mathcal{G} (\alpha)=\xi \biggl( \frac{1}{T} \int _{0}^{T} M_{\mathbf{z}_{\alpha}}^{-1}(t)G_{1} \bigl(t,\mathbf{x}(t,\mathbf {z}_{\alpha})\bigr) dt \biggr) . $$
(14)

If there exists aV with \(\mathcal{G} (a)=0\) and \({\det ( ( {d\mathcal{G} }/{d\alpha} ) (a) ) \neq 0}\), then there is a T-periodic solution φ(t,ε) of system (11) such that φ(0,ε)→z a as ε→0.

Theorem 6 goes back to Malkin (Malkin 1956) and Roseau (Roseau 1966), for a shorter proof see (Buică et al. 2007).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guirao, J.L.G., Vera, J.A. & Wade, B.A. On the periodic solutions of a rigid dumbbell satellite in a circular orbit. Astrophys Space Sci 346, 437–442 (2013). https://doi.org/10.1007/s10509-013-1456-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-013-1456-8

Keywords

Navigation