Skip to main content
Log in

Analysis of periodic orbits in the Saturn-Titan system using the method of Poincare section surfaces

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We explore the periodic orbits and the regions of quasi-periodic motion around both the primaries in the Saturn-Titan system in the framework of planar circular restricted three-body problem. The location, nature and size of periodic and quasi-periodic orbits are studied using the numerical technique of Poincare surface of sections. The maximum amplitude of oscillations about the periodic orbits is determined and is used as a parameter to measure the degree of stability in the phase space for such orbits. It is found that the orbits around Saturn remain around it and their stability increases with the increase in the value of Jacobi constant C. The orbits around Titan move towards it with the increase in C. At C=3.1, the pericenter and apocenter are 358.2 and 358.5 km, respectively. No periodic or quasi-periodic orbits could be found by the present method around the collinear Lagrangian point L 1 (0.9569373834…).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Broucke, R.A.: Periodic orbits in the restricted three-body problem with Earth-Moon masses. Technical Report, vol. 32, Jet Propulsion Lab., Pasadena, CA (1968)

  • Companys, V., et al.: Use of Earth-Moon Libration Points for Future Missions. AAS, vol. 404 (1995)

    Google Scholar 

  • Contopoulos, G.: Proc. R. Soc. Lond. 435, 551 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Darwin, G.H.: Periodic Orbits. Scientific Papers, vol. 4. Cambridge University Press, Cambridge (1911)

    Google Scholar 

  • Dutt, P., Sharma, R.K.: J. Guid. Control Dyn. 33, 1010 (2010)

    Article  Google Scholar 

  • Gomez, G., et al.: Study refinement of semi-analytical halo orbit theory. ESOC contract 8625/89, Final Report (1991a)

  • Gomez, G., et al.: In: Proceedings of the 3rd International Symposium on Space Flight Dynamics, ESA-SP-326, vol. 35, ESA (1991b)

    Google Scholar 

  • Hagel, J.: Celest. Mech. Dyn. Astron. 56, 267 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  • Hagel, J., Trenkler, T.: Celest. Mech. Dyn. Astron. 56, 81 (1993)

    Article  MATH  ADS  Google Scholar 

  • Henon, M.: Annu. Astron. 28, 499 (1965a)

    ADS  Google Scholar 

  • Henon, M.: Annu. Astron. 28, 9927 (1965b)

    Google Scholar 

  • Henon, M.: Bull. Astron., Ser. 3 1, 57 (1965c)

    Google Scholar 

  • Henon, M.: Bull. Astron., Ser. 3 2, 49 (1965d)

    Google Scholar 

  • Huang, S.S.: Astron. J. 67, 304 (1962)

    Article  ADS  Google Scholar 

  • Jefferys, W.H.: Publ. Dep. Astron. Univ. Tex. Austin, Ser. II 3, 6 (1971)

    Google Scholar 

  • Jefferys, W.H.: Celest. Mech. 30, 85 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Kolmen, E., et al.: New Trends in Astrodynamics and Applications III, vol. 886, pp. 68. American Inst. of Physics, Melville (2007)

    Google Scholar 

  • Moulton, F.R.: Periodic Orbits. Carnegie Institute of Washington Publications, p. 161 (1920)

  • Poincare, H.: Les Methodes Nouvelles de la Mechanique Celeste, vol. 1, pp. 82. Gauthier-Villas, Paris (1892)

    Google Scholar 

  • Ragos, O., et al.: Celest. Mech. Dyn. Astron. 67, 251 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Rudolf, D., Sun, Y.S.: Celest. Mech. Dyn. Astron. 67, 87 (1997)

    Article  MATH  ADS  Google Scholar 

  • Sharma, R.K., Subba Rao, P.V.: Celest. Mech. 13, 137–149 (1976)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Smith, R.H.: The onset of chaotic motion in the restricted problem of three bodies. Ph.D. Thesis, Univ. of Texas at Austin, Austin, TX (1991)

  • Smith, R.H., Szebehely, V.: Celest. Mech. Dyn. Astron. 56, 409 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (1983)

    Google Scholar 

  • Stromgren, E.: O. Connaissance Actualle des Orbites dans le Problem des Trois Corps. Publications and Minor communications of Copenhagen Observatory, Publication 100, Copenhagen University, Astronomical Observatory, Denmark (1935)

  • Szebehely, V.: Theory of Orbits. Academic Press, San Diego (1967)

    Google Scholar 

  • Winter, O.C.: Planetary and Space Science 48, 23 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  • Winter, O.C., Murray, C.D.: QMW Notes No. 16. Queen Marry and Westfield College, London, UK (1994a)

  • Winter, O.C., Murray, C.D.: QMW Notes No. 17. Queen Marry and Westfield College, London, UK (1994b)

  • Winter, O.C., Murray, C.D.: Astron. Astrophys. 319, 290 (1997a)

    ADS  Google Scholar 

  • Winter, O.C., Murray, C.D.: Astron. Astrophys. 328, 304 (1997b)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Safiya Beevi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safiya Beevi, A., Sharma, R.K. Analysis of periodic orbits in the Saturn-Titan system using the method of Poincare section surfaces. Astrophys Space Sci 333, 37–48 (2011). https://doi.org/10.1007/s10509-011-0630-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-011-0630-0

Keywords

Navigation