Skip to main content
Log in

Time-fractional KdV equation for electron-acoustic waves in plasma of cold electron and two different temperature isothermal ions

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The time fractional KdV equation is derived for small but finite amplitude electron-acoustic solitary waves in plasma of cold electron fluid with two different temperature isothermal ions. The effects of the time fractional parameter on the electrostatic solitary structures are presented. It is shown that the effect of time fractional parameter can be used to modify the amplitude of the electrostatic waves (viz. the amplitude, width and electric field) of the electron-acoustic solitary waves. The model may provide a possible explanation for the low-frequency component of the broadband electrostatic noise in the plasma sheet boundary layer of the Earth’s magnetotail where the electron beams are not present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Baleanu, D., Golmankhaneh, A.K., Nigmatullin, R., Golmankhaneh, A.K.: Fractional Newtonian mechanics. Cent. Eur. J. Phys. 8(1), 120–125 (2010)

    Article  Google Scholar 

  • Baleanu, D., Güvenç, Z.B., Tenreiro Machado, J.A. (eds.): New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Dordrecht (2010)

    MATH  Google Scholar 

  • El-Wakil, S.A., Abulwafa, E.M., Zahran, M.A., Mahmoud, A.A.: Time-fractional KdV equation: formulation and solution using variational methods. Nonlinear Dyn. (2010, in press). doi:10.1007/s11071-010-9873-5

  • Elwakil, S.A., Zahran, M.A., El-Shewy, E.K.: Nonlinear electron-acoustic solitary waves in a relativistic electron-beam plasma system with non-thermal electrons. Phys. Scr. 75(6), 803–808 (2007)

    Article  MATH  ADS  Google Scholar 

  • Frederico, G.S.F., Torres, D.F.M.: Fractional conservation laws in optimal control theory. Nonlinear Dyn. 53(3), 215–222 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Fujioka, J.: Lagrangian structure and Hamiltonian conservation in fractional optical solitons. Commun. Fract. Calc. 1, 1–14 (2010)

    Google Scholar 

  • He, J.-H.: A new approach to nonlinear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2(4), 230–235 (1997)

    Article  ADS  Google Scholar 

  • He, J.-H.: Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos Solitons Fractals 19, 847–851 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • He, J.-H., Wu, G.-C., Austin, F.: The variational iteration method which should be followed. Nonlinear Sci. Lett. A 1, 1–30 (2010)

    Google Scholar 

  • Herzallah, M.A.E., Baleanu, D.: Fractional-order Euler–Lagrange equations and formulation of Hamiltonian equations. Nonlinear Dyn. 58, 385–391 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Huang, F.-H., Guo, B.-L.: General solutions to a class of time fractional partial differential equations. Appl. Math. Mech. 31(7), 815–826 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Ikezawa, S., Nakamura, Y.: Observation of electron plasma waves in plasma of two-temperature electrons. J. Phys. Soc. Jpn. 50(3), 962–967 (1981)

    Article  ADS  Google Scholar 

  • Kakad, P., Singh, S.V., Reddy, R.V., Lakhina, G.S., Tagare, S.G.: Electron acoustics solitary waves in the Earth magnetotail region. Adv. Space Res. 43(12), 1945–1949 (2009)

    Article  ADS  Google Scholar 

  • Mendes, R.V.: A fractional calculus interpretation of the fractional volatility model. Nonlinear Dyn. 55(4), 395–399 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Momani, S.: An explicit and numerical solution of the fractional KdV equation. Math. Comput. Simul. 70, 110–118 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Muslih, S.I., Agrawal, O.P.: Riesz fractional derivatives and fractional dimensional space. Int. J. Theor. Phys. 49, 270–275 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Omura, Y., Kojima, H., Umeda, T., Matsumoto, H.: Observational evidence of dissipative small scale processes: Geotail spacecraft observation and simulation of electrostatic solitary waves. Astrophys. Space Sci. 277, 45–57 (2001)

    Article  ADS  Google Scholar 

  • Pakzad, H.R.: Effect of q-nonextensive distribution of electrons on electron acoustic solitons. Astrophys. Space Sci. (2010). doi:10.1007/s10509-010-0570-0

    Google Scholar 

  • Pakzad, H.R., Tribeche, M.: Electron-acoustic solitons in plasma with nonthermal electrons. Astrophys. Space Sci. 330, 95–99 (2010)

    Article  MATH  ADS  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  • Pottelette, R., Ergun, R.E., Treumann, R.A., Berthomier, M., Carlson, C.W., McFadden, J.P., Roth, I.: Modulated electron-acoustic waves in auroral density cavities: FAST observations. Geophys. Res. Lett. 26(16), 2629–2632 (1999)

    Article  ADS  Google Scholar 

  • Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53(2), 1890 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  • Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55(3), 3581 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  • Sahu, B.: Electron acoustic solitary waves and double layers with superthermal hot electrons. Phys. Plasmas 17, 122305 (2010)

    Article  ADS  Google Scholar 

  • Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1998)

    Google Scholar 

  • Tagare, S.G., Singh, S.V., Reddy, R.V., Lakhina, G.S.: Electron acoustic solitons in the Earth’s magnetotail. Nonlinear Process. Geophys. 11, 215–218 (2004)

    Article  ADS  Google Scholar 

  • Tan, B.: A physical explanation of solar microwave Zebra pattern with the current-carrying plasma loop model. Astrophys. Space Sci. 325, 251–257 (2010)

    Article  ADS  Google Scholar 

  • Tarasov, V.E., Zaslavsky, G.M.: Fractional Ginzburg-Landau equation for fractal media. Phys. A, Stat. Mech. Appl. 354, 249–261 (2005)

    Article  Google Scholar 

  • Tarasov, V.E., Zaslavsky, G.M.: Nonholonomic constraints with fractional derivatives. J. Phys. A, Math. Gen. 39, 9797–9815 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Washimi, H., Taniuti, T.: Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17(19), 996–998 (1966)

    Article  ADS  Google Scholar 

  • Wu, G.-C., He, J.-H.: Fractional calculus of variations in fractal space-time. Nonlinear Sci. Lett. A 1, 281 (2010)

    Article  ADS  Google Scholar 

  • Younsi, S., Tribeche, M.: Arbitrary amplitude electron-acoustic solitary waves in the presence of excess superthermal electrons. Astrophys. Space Sci. 330, 295–300 (2010)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam M. Abulwafa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Wakil, S.A., Abulwafa, E.M., El-shewy, E.K. et al. Time-fractional KdV equation for electron-acoustic waves in plasma of cold electron and two different temperature isothermal ions. Astrophys Space Sci 333, 269–276 (2011). https://doi.org/10.1007/s10509-011-0629-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-011-0629-6

Keywords

Navigation