Skip to main content
Log in

Gravitomagnetism: a novel explanation of the precession of planets and binary pulsars

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We have studied the consequences of applying gravitomagnetism to gravitating objects. Gravitomagnetism was the missing part of the Newton’s law of gravitation. This phenomenon is manifest in the generalized Newton’s law of gravitation that is published in A.I. Arbab, Astrophys. Space Sci. 325:37, 2010a. Owing to gravitomagnetism, we have shown, the precession of planetary and pulsars orbits is due to the interaction of these objects with the gravitomagnetic field. We have calculated the gravitomagnetic fields arising from the orbital motion of the planets and binary pulsars and we have shown that they are double the Larmor-like frequency. This effect coincides with the prediction of general relativity and places the general theory of relativity on new affirmative grounds. Consequently, a modified Newton law of gravitation of Lorentz-type is proposed, which explains this precession.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arbab, A.I.: A quantum universe and the solution to the cosmological problems. Gen. Relativ. Gravit. 36, 2465 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Arbab, A.I.: On the analogy between the electrodynamics and hydrodynamics using quaternions. In: The 14th International Conference on Modelling Fluid Flow (CMFF’09), Budapest, Hungary, 9–12 September 2009

  • Arbab, A.I.: The generalized Newton’s law of gravitation. Astrophys. Space Sci. 325, 37 (2010a)

    Article  MATH  ADS  Google Scholar 

  • Arbab, A.I.: The phenomenological model for the precession of planets and bending of light. Astrophys. Space Sci. 325, 41 (2010b)

    Article  MATH  ADS  Google Scholar 

  • Arbab, A.I., Satti, Z.: Progress Phys. 2, 8 (2009)

    MathSciNet  Google Scholar 

  • Barker, B.M., O’Connell, R.F.: Phys. Rev. D 12, 329 (1975)

    Article  ADS  Google Scholar 

  • Behera, H., Naik, P.C.: Int. J. Mod. Phys. A 19, 4207 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Bisnovatyi-Kogan, G.S.: Recycled binary pulsarsóa most precise laboratory of fundamental physics. J. Astron. Astrophys. Trans. 25(5), 369 (2006)

    Article  ADS  Google Scholar 

  • Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. McGraw-Hill, New York (1964)

    Google Scholar 

  • Campion, D.C., et al.: PSR J1829 + 2456: a relativistic binary pulsar. Mon. Not. R. Astron. Soc. 350, L61 (2004)

    Article  ADS  Google Scholar 

  • Ciufolini, I., Pavlis, E.C.: A confirmation of the general relativistic prediction of the Lens–Thirring effect. Nature 431(7011), 958 (2004)

    Article  ADS  Google Scholar 

  • Csaki, C., Graesser, M., Randall, L., Terning, J.: Cosmology of brane models with radion stabilization. Phys. Rev. D 62, 045015 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  • Damour, T., Taylor, J.H.: Strong-field tests of relativistic gravity and binary pulsars. Phys. Rev. D 45, 1840 (1992)

    Article  ADS  Google Scholar 

  • de Laplace, P.S.: Traité de Mécanique Céleste, Tome IV, Livre X, Chap. 7. Courcier, Paris (1805)

    Google Scholar 

  • Green, M., Schwarz, J., Witten, E.: Superstring Theory. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  • Griffiths, D.J.: Introduction to Quantum Mechanics. Prentice Hall, New York (1995)

    MATH  Google Scholar 

  • Hulse, R.A., Taylor, J.H.: Astrophys. J. 191, L59 (1974)

    Article  ADS  Google Scholar 

  • Kaluza, T.: Preuss. Akad. Wiss. Berlin (Math. Phys.) 966 (1921)

  • Klein, O.: Quantentheorie und funfdimensionale Relativitatstheorie. Z. Phys. Hadrons Nucl. 37(12), 895 (1926)

    Google Scholar 

  • Lense, J., Thirring, H.: Phys. Z. 19, 156 (1918)

    Google Scholar 

  • Le Verrier, U.: Ann. Chim. Phys. 60, 174 (1835)

    Google Scholar 

  • Mashhoon, P., Will, C.: Phys. Rev. D 39, 2825 (1989)

    Article  ADS  Google Scholar 

  • Mashhoon, B., Iorio, L., Lichtenegger, H.: On the gravitomagnetic clock effect. Phys. Lett. A 292, 49 (2001)

    Article  MATH  ADS  Google Scholar 

  • Newcomb, S.: Astron. Pap. Am. Ephemer. 1, 472 (1882)

    Google Scholar 

  • Nice, D.J.: Neutron star masses derived from relativistic measurements of radio pulsars. Adv. Space Res. 38, 2721 (2006)

    Article  ADS  Google Scholar 

  • Nordström, G.: Physikalische Z. 15, 504 (1914) OCLC 1762351

    Google Scholar 

  • Oppenheim, S.: Ann. Phys. 52, 415 (1917a)

    Google Scholar 

  • Oppenheim, S.: Ann. Phys. 53(31), 163 (1917b)

    Article  Google Scholar 

  • Oppenheim, S.: Ann. Phys. 54, 38 (1917c)

    Google Scholar 

  • Paterson, J.A.: J. R. Astron. Soc. Can. 7, 389 (1913)

    ADS  Google Scholar 

  • Peng, H.: Gen. Relativ. Gravit. 15, 725 (1983)

    Article  MATH  ADS  Google Scholar 

  • Peng, H.: Gen. Relativ. Gravit. 22, 609 (1990)

    Article  ADS  Google Scholar 

  • Salam, A.: Elementary Particle Theory, Svartholm, N. (ed.) Almquist and Wiksells, Stockholm (1968)

    Google Scholar 

  • Taylor, J.H., Weinberg, J.M.: Astrophys. J. 345, 434 (1989)

    Article  ADS  Google Scholar 

  • Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arbab I. Arbab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbab, A.I. Gravitomagnetism: a novel explanation of the precession of planets and binary pulsars. Astrophys Space Sci 330, 61–68 (2010). https://doi.org/10.1007/s10509-010-0353-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-010-0353-7

Keywords

Navigation