Skip to main content
Log in

Effects of Initial Conditions on Compressible Mixing in Supernova-Relevant Laboratory Experiments

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In core-collapse supernovae, strong blast waves drive interfaces susceptible to Rayleigh–Taylor (RT), Richtmyer–Meshkov (RM), and Kelvin–Helmholtz (KH) instabilities. In addition, perturbation growth can result from material expansion in large-scale velocity gradients behind the shock front. Laser-driven experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen–helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained.

This paper represents a summary of recent results from a computational study of unstable systems driven by high Mach number shock and blast waves. For planar multimode systems, compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions (ICs) by allowing for memory of the initial conditions to be retained in the mix-width at all times. With higher-dimensional blast waves, divergence restores the properties necessary for establishment of the self-similar state, but achieving it requires very high initial characteristic mode number and high Mach number for the incident blast wave. Initial conditions predicted by some recent stellar calculations are incompatible with self-similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chevalier, R.: 1976, ApJ 207, 872.

    Article  Google Scholar 

  • Dimonte, G., Youngs, D. L., Dimits, A., Weber, S., Marinak, M., et al.: 2002, Phys. Fluids 16(5), 1668.

    Article  Google Scholar 

  • Drake, R.P., Robey, H.F., Hurricane, O.A., Zhang, Y., Remington, B.A. et al.: 2002, AJ 564, 896.

    Article  Google Scholar 

  • Falk, S.W. and Arnett, W.D.: 1973, ApJ Lett. 180, L65.

    Article  Google Scholar 

  • Glimm, J. and Li, X.L.: 1988, Phys. Fluids 31(8), 2077.

    Article  Google Scholar 

  • Howell, L.H. and Greenough, J.A.: 2003, J. Comput. Phys. 184, 53.

    Article  MathSciNet  Google Scholar 

  • Hughes, J.P., Rakowski, C.E., Burrows, D.N. and Slane, P.O.: 2000, ApJ 528, L109.

    Article  Google Scholar 

  • Kifonidis, K., Plewa, T., Janka, H.-Th. and Muller, E.: 2003, A&A 408, 621.

    Google Scholar 

  • Meakin, C.A. and Arnett, W.D.: in preparation.

  • Meshkov, E.E.: 1969, Izv. AN SSSR Mekhanika Zhidkosti I Gaza 4(5), 151.

    Google Scholar 

  • Miles, A.R.: “Bubble merger model for the nonlinear Rayleigh–Taylor instability driven by a strong blast wave”, to appear in Phys. Plasmas.

  • Oron, D., Arazi, L., Kartoon, D., Rikanati, A., Alon, U. and Shvarts, D.: 2001, Phys. Plasmas 8(6), 2883.

    Article  Google Scholar 

  • Rayleigh, J.W.S.: 1899, Scientific Papers, Cambridge University press, Cambridge.

    Google Scholar 

  • Richtmyer, R.D.: 1960, Commun. Pure Appl. Math. 13, 297.

    Google Scholar 

  • Sharp, K.I.: 1984, Physica D 12, 3.

    Article  Google Scholar 

  • Taylor, G.I.: 1950, Proc. R. Soc. Lond. Ser. A 201, 192.

    Google Scholar 

  • Tueller, J., Barthelmy, S., Gehrels, N., Teegarden, B.J., Leventhal, M. and MacCallum, C.J.: 1990, ApJ 351, L41.

    Article  Google Scholar 

  • Wang, L., Baade, D., Höflich, P., Khokhlov, A., Wheeler, J.C. et al.: 2003, ApJ 591, 1110.

    Article  Google Scholar 

  • Youngs, D.L.: 1984, Physica D 12, 32.

    Article  Google Scholar 

  • Youngs, D.L.: 1994, Laser Part. Beams 12(4), 725.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miles, A.R., Edwards, M.J. & Greenough, J.A. Effects of Initial Conditions on Compressible Mixing in Supernova-Relevant Laboratory Experiments. Astrophys Space Sci 298, 17–24 (2005). https://doi.org/10.1007/s10509-005-3907-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-005-3907-3

Keywords

Navigation