Skip to main content
Log in

A network approach to the French system of legal codes—part I: analysis of a dense network

  • Published:
Artificial Intelligence and Law Aims and scope Submit manuscript

Abstract

We explore one aspect of the structure of a codified legal system at the national level using a new type of representation to understand the strong or weak dependencies between the various fields of law. In Part I of this study, we analyze the graph associated with the network in which each French legal code is a vertex and an edge is produced between two vertices when a code cites another code at least one time. We show that this network distinguishes from many other real networks from a high density, giving it a particular structure that we call concentrated world and that differentiates a national legal system (as considered with a resolution at the code level) from small-world graphs identified in many social networks. Our analysis then shows that a few communities (groups of highly wired vertices) of codes covering large domains of regulation are structuring the whole system. Indeed we mainly find a central group of influent codes, a group of codes related to social issues and a group of codes dealing with territories and natural resources. The study of this codified legal system is also of interest in the field of the analysis of real networks. In particular we examine the impact of the high density on the structural characteristics of the graph and on the ways communities are searched for. Finally we provide an original visualization of this graph on an hemicyle-like plot, this representation being based on a statistical reduction of dissimilarity measures between vertices. In Part II (a following paper) we show how the consideration of the weights attributed to each edge in the network in proportion to the number of citations between two vertices (codes) allows deepening the analysis of the French legal system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The elements of A Δ B are the elements belonging to A but not to B and the elements belonging to B but not to A. In other words it is the set of elements belonging to either A or B but not both.

References

  • Bommarito MJ, Katz DM (2009) Properties of the United States code citation network. LSN Experimental and Empirical Studies. http://arxiv.org/abs/0911.1751

  • Bommarito MJ, Katz DM (2010) A mathematical approach to the study of the United States code (March 25, 2010). Phys A 389(19):4195–4200

    Article  Google Scholar 

  • Bommarito MJ, Katz DM, Zelner J, Fowler JH (2010) Distance measures for dynamic citation networks. Phys A 389(19):4201–4208

    Article  Google Scholar 

  • Boulet R (2008) Comparaison de graphes, applications à l’étude d’un réseau de sociabilité paysan au moyen age. PhD thesis, Université de Toulouse

  • Boulet R, Jouve B, Rossi F, Villa N (2008) Batch kernel sum and related laplacian methods for social network analysis. Neurocomputing 71(7–9):1257–1273

    Article  Google Scholar 

  • Boulet R, Mazzega P, Bourcier D (2009) Network analysis of the french environmental code. Artificial Intelligence approaches to the complexity of legal systems (AICOL 2009), Rotterdam

  • Bourcier D (1998) Approche légistique et systémique de la codification. GIP Mission de Recherche Droit et Justice. Rapport final. CNRS—Laboratoire Informatique droit linguistique

  • Bourcier D (2004) Codification et légistique à l’heure du numérique: de nouveaux outils pour mieux gérer et connaître le droit. In: Larroumet C (ed) L’avenir de la codification en France et en Amérique latine—El futuro de la codificación en Francia y en América Latina, Les colloques du Sénat. Association Andres Bello des juristes francolatino-américains, pp 165–186

  • Bourcier D, Mazzega P (2007a) Codification, law article and graphs. In: Lodder AR, Mommers L (eds) Legal knowledge and information systems, JURIX. IOS Press, Amsterdam, pp 29–38

  • Bourcier D, Mazzega P (2007b) Toward measures of legal complexity. In: Proceedings 11th International conference on artificial intelligence and law, Stanford Law School. ACM Press, New York, pp 211–215

  • Brandes U, Erlebach T (2005) Network analysis—methodological foundations. Springer, Berlin, p 472

    Book  MATH  Google Scholar 

  • Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70:066111

    Article  Google Scholar 

  • Colizza V, Flammini A, Serrano MA, Vespignani A (2006) Detecting rich-club ordering in complex networks. Nat Phys 2:110–111

    Article  Google Scholar 

  • Conseil d’Etat (1991) De la sécurité juridique. Rapport Public établi par Mme F. Chandernagor

  • Conseil d’Etat (2006) La sécurité juridique et la complexité du droit. Rapport Public établi par M. J. Claussade. Etudes & Documents, vol 57, La Documentation Française, pp 225–338

  • Davis GF, Yoo M, Baker WE (2003) The small world of the American corporate elite, 1982–2001. Strateg Organ 1(3):301–326

    Article  Google Scholar 

  • De Fraysseix H (1999) A heuristic for graph symmetry detection. In: Proceedings of graph drawing 99. Lecture Notes in Computer Science 1731. Springer, Berlin, pp 276–285

  • del Sol A, Hirotomo F, O’Meara P (2004) Topology of small-world networks of protein–protein complex structures. Bioinformatics 21(8):1311–1315

    Article  Google Scholar 

  • Delmas-Marty M (2007) Les forces imaginantes du droit (III): le pluralisme ordonné. Editions du Seuil, Paris

  • Doat M, Le Goff J, Pédrot P (2007) Droit et complexité—pour une nouvelle intelligence du droit vivant. Presses Universitaires de Rennes

  • Epstein RA (1995) Simple rules for a complex world. Harvard Univ. Press, Cambridge

    Google Scholar 

  • Erdös P, Rényi A (1959) On random graphs. Publ Math 6:290–297

    MATH  Google Scholar 

  • Fortunato S (2010) Community detection in graphs. Phys Rep 486:75–174

    Article  MathSciNet  Google Scholar 

  • Fowler JH, Jeon S (2008) The authority of Supreme Court precedent. Soc Netw 30:16–30

    Article  Google Scholar 

  • Fowler JH, Johnson TR, Spriggs JF II, Jeaon S, Wahlbeck PJ (2007) Network analysis and the law: measuring the legal importance of precedents at the U.S. Supreme Court. Political Anal 15(3):324–346

  • Freeman LC (1979) Centrality in social networks: conceptual clarification. Soc Netw 1(3):215–239

    Article  Google Scholar 

  • Gaume B (2004) Balades aléatoires dans les petits mondes lexicaux. I3—Inf Interact Intell 4(2):39–96

    Google Scholar 

  • Grossman J (2002) The evolution of the mathematical research collaboration graph. Congr Numerantium 158:202–212

    MathSciNet  Google Scholar 

  • Halmos P (1974) Measure theory. Volume 18 de Graduate texts in mathematics. Springer, Berlin, ISBN0387900888

  • Hartigan JA, Wong MA (1979) A k-means clustering algorithm. Appl Stat 28:100–108

    Article  MATH  Google Scholar 

  • Kades E (1997) The laws of complexity and the complexity of laws: the implications of computational complexity theory for the law. Rutgers L Rev 49:403–484

    Google Scholar 

  • Kaplow L (1995) A model of the optimal complexity of legal rules. J Law Econ Organ 11(1):150–163

    Google Scholar 

  • Kuntz P (1992) Représentation euclidienne d’un graphe abstrait en vue de sa segmentation. Thèse de Doctorat, spécialité Mathématiques et applications aux Sciences de l’Homme, Ecole des Hautes Etudes en Sciences Sociales, Paris

  • Latapy M, Magnien C (2008) Complex network measurements: estimating the relevance of observed properties. In: INFOCOM—the 27th conference on computer communications, IEEE, Phoenix (AZ), pp 1660–1668

  • Legifrance (2009) Service Public de la Diffusion du Droit. http://www.legifrance.gouv.fr/

  • Leicht EA, Clarkson G, Shedden K, Newman MEJ (2007) Large-scale structure of time evolving citation networks. Eur Phys J B 59:75–83

    Article  MATH  Google Scholar 

  • Long SB, Swingen JA (1987) An approach to the measurement of tax law complexity. J Am Tax Assoc 8(2):22–36

    Google Scholar 

  • Newman MEJ (2004) Fast algorithm for detecting community structure in networks. Phys Rev E69:066133

    Google Scholar 

  • Newman M (2005) A measure of betweenness centrality based on random walks. Soc Netw 27(1):39–54

    Article  Google Scholar 

  • Ost F, van de Kerchove M (2002) De la pyramide au réseau ? Pour une théorie dialectique du droit. Publ. Facultés Univ. Saint-Louis, Bruxelles

  • Pagallo U (2006) Theoria giuridica della complessità. In: Giappichelli G (ed), Torino

  • Pons P, Latapy M (2005) Computing communities in large networks using random walks. J Graph Algorithms Appl 10(2):191–218

    MathSciNet  Google Scholar 

  • Porter MA, Omnela J-P, Mucha PJ (2009) Communities in networks. Notices Am Math Soc 56(9):1082–1097

    MATH  Google Scholar 

  • Ruhl JB (1997) Thinking of environmental law as a complex adaptive system: how to clean up the environment by making a mess of environmental law. Hous L Rev 34(4):933–1002

    Google Scholar 

  • Schuck PH (1992) Legal complexity: some causes, consequences, and cures. Duke L J 42(1):1–52

    Article  MathSciNet  Google Scholar 

  • Secrétariat Général du Gouvernement (2007) Guide pour l’élaboration des textes législatifs et règlementaires. Premier Ministre, Conseil d’Etat. La Documentation Française, 2nd edn

  • Tullock G (1995) On the desirable degree of detail in the law. Eur J Law Econ 2:199–209

    Article  Google Scholar 

  • Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395–416. http://arxiv.org/abs/0711.0189,0711.0189

    Google Scholar 

  • Watts DJ (2003) Small worlds: the dynamics of networks between order and randomness. Princeton University Press, Princeton

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of’small-world’ networks. Nature 393:440–442

    Article  Google Scholar 

  • Zhou S, Mondragón RJ (2004) The rich-club phenomenon in the internet topology. IEEE Commun Lett 8(3):180–182

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to Mme Elisabeth Catta, Rapporteur for the Higher Commission for Codification, for her interest in our work and for her helpful comments. R. Boulet has benefited from a post doctoral grant of the Institut National des Sciences de l’Univers (CNRS, Paris). This study was funded by the RTRA Sciences et Techniques de l’Aéronautique et de l’Espace (http://www.fondationstae.net/) in Toulouse (MAELIA project—http://maelia1.wordpress.com/). The yEd Graph editor has been used for producing the Figs. 1, 4, 5 and 6. Statistical properties of networks have been computed with R and the library igraph (http://www.rproject.org/); Figs. 2 and 3 were obtained with R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Boulet.

Appendix

Appendix

Let us recall some aspects of a principal component analysis (PCA). If X is a data matrix with n rows and p columns (the ith row of X represents the coordinates in R p of the ith individual), a PCA gives a new coordinate system, that is a set of vectors u 1, … ,u p which is the new basis of R p. The individuals have new coordinates in this basis. The vector consisting of the jth coordinate of the individuals is called jth principal component and we denote it by c j . This new coordinate system is such that maximizing the variance of the data projected on an r-dimensional subspace is done by projecting the data on the r first principal coordinates. It turns out that the vectors u j are the orthonormal eigenvectors of the covariance matrix V = XX′ (X′ being the transpose of X). The principal coordinates c j are given by \( c_{j} = {\mathbf{X}}u_{j} \) with \( u_{j} = \sqrt {\lambda_{j} } z_{j} \) where the z j are the orthonormal eigenvectors of the scalar product matrix W = X′X. with matrix Λ of eigenvalues λ j .

Proceeding in the same way with the distance matrix D we obtain the scalar product matrix W by the Torgerson formula

$$ w_{ij} = - \frac{1}{2}\left( {d_{i,j}^{2} - d_{i,.}^{2} - d_{.,j}^{2} - d_{.,.}^{2} } \right) $$
(5)

where

$$ d_{i,.}^{2} = - \frac{1}{n}\sum\limits_{j} {d_{i,j}^{2} } ,\quad d_{.,j}^{2} = - \frac{1}{n}\sum\limits_{i} {d_{i,j}^{2} } \quad {\text{and}}\quad d_{.,.}^{2} = - \frac{1}{n}\sum\limits_{i} {d_{i,.}^{2} } $$
(6)

Once we have the matrix W, a principal component analysis gives us the principal coordinates. Now, let X be a n × p data matrix and let a* ∈ (R p)* be a variable represented by the vector a ∈ R p (Riesz representation theorem). If we want to suppress the influence of the variable a* on the data matrix, we can consider the data projected on the orthogonal space of a (denoted \( a^{ \bot } \)). The new data matrix is Y = XP where P = I  aa′ is the matrix of the projection on \( a^{ \bot } \) (with \( \left\| a \right\| = 1 \)), we can then perform a principal component analysis on the new data matrix Y.

If we do not have X but the distance matrix D (and consequently the matrix W, the eigendecomposition of which is W = QΛQ −1) we can reconstruct a data matrix by setting X = Q√Λ (which is in fact the coordinates of individuals in the principal component system). Moreover we may not have directly the vector a ∈ R p representing the variable a* ∈ (R p)* but we have the value \( \tilde{c} \) of the n individuals for the variable a*. The jth coordinate of a is the correlation coefficient between \( \tilde{c} \) and the jth principal component c j .

In practice, we obtained the angular coordinate θ(j) of the jth code in the hemicycle representation of the FLC network (see Sect. 4) in the following way: from the distance matrix D we get the scalar product matrix W, perform a first PCA and we recover X. Then we compute the vector a and perform a second PCA on XP (where P is the matrix of the projection on \( a^{ \bot } \)) and get a first principal component c 1. Finally θ(j) is given (in rd) by:

$$ \theta (j) = \frac{{\pi \left[ {c_{1} (j) - \min_{k} \left( {c_{1} (k)} \right)} \right]}}{{\max_{k} \left( {c_{1} (k)} \right) - \min_{k} \left( {c_{1} (k)} \right)}} $$
(A3)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulet, R., Mazzega, P. & Bourcier, D. A network approach to the French system of legal codes—part I: analysis of a dense network. Artif Intell Law 19, 333–355 (2011). https://doi.org/10.1007/s10506-011-9116-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10506-011-9116-1

Keywords

Navigation