Skip to main content
Log in

Effects of acute hypoxia stress on hemato-biochemical parameters, oxidative resistance ability, and immune responses of hybrid yellow catfish (Pelteobagrus fulvidraco × P. vachelli) juveniles

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Stress-induced by low water-dissolved oxygen (DO) negatively influences the overall fish performances. Hybrid yellow catfish (Pelteobagrus fulvidraco × P. vachelli) was subjected to 2 DO levels: 1.5 mg/L (hypoxia) and 6.5 mg/L (control-normoxia) during the period of the experiment. Blood and liver were sampled at 0.0-, 6.0-, 12.0-, 24.0-, 48.0-, and 96.0-h post-exposure. Results showed an increase in the hematological parameters including white blood cell (WBC), red blood cell (RBC), hemoglobin (HGB), and hematocrit percentage (HCT) during the first 24 h. HCT and HGB values were significantly increased after 6-h and 12-h post-exposure, whereas RBC and WBC counts were significantly decreased 48-h and 96-h post-exposure to hypoxia. Glucose, total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT), and aspartate transaminase (AST) levels were increased in hypoxia group, meanwhile serum total protein (TP) showed balanced values in hypoxia group. Glucose values were significantly increased from 6 h, while the other parameters such ALT, AST, and TG were mostly significant increased at 96 h. Hypoxia-induced stress mostly affects the hepatic antioxidant and immune resistance functions, resulting in increments of cortisol levels, lysozyme, superoxide dismutase, and catalase enzyme activities. The concentration increments were observed in lactate dehydrogenase, hepatic TG, and complement C3 in hypoxia group. Liver TP and glycogen were reduced in the hypoxia group throughout the whole experiment time. Interestingly, all the indices (hemato-biochemical, oxidation, and immune resistance) were returned to normal after 96 h of recovery. Therefore, we conclude that DO below the normal threshold induced metabolic stress, immune suppression, and oxidative stress of the exposed fish. Although hybrid yellow catfish developed some strong adaptabilities to maintain oxygen provision, and generate energy from anaerobic sources to resist, these results contribute positively to the insights on different metabolic responses involved during hypoxic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability and material

The data for this work will be made available when needed and on request.

Code availability

Not applicable

References

  • Abdel-Tawwab M, Hagras AE, Elbaghdady Heba Allah M, Monier MN (2014) Dissolved oxygen level and stocking density effects on growth, feed utilization, physiology, and innate immunity of Nile tilapia (Oreochromis niloticus). J Appl Aquac 26(4):340–355. https://doi.org/10.1080/10454438.2014.959830

    Article  Google Scholar 

  • Adamu KM, Kori-Siakpere O (2011) Effects of sublethal concentrations of tobacco (Nicotiana tobaccum) leaf dust on some biochemical parameters of hybrid catfish (Clarias gariepinus and Heterobranchus Bidorsalis). Braz Arch Biol Technol 54(1):183–196. https://doi.org/10.1590/S1516-89132011000100023

    Article  Google Scholar 

  • Affonso EG, Polez VLP, Correa CF, Mazon AF, Araujo MRR, Moraes G, Rantin FT (2002) Blood parameters and metabolites in the teleost fish (Colossoma macropomum) exposed to sulfide or hypoxia. Comp Biochem Physiol C 133(3):375–382. https://doi.org/10.1016/S1532-0456(02)00127-8

    Article  CAS  Google Scholar 

  • Bacca H, Huvet A, Fabioux C, Daniel JY, Delaporte M, Pouvreau S, van Wormhoudt A, Moal J (2005) Molecular cloning and seasonal expression of oyster glycogen phosphorylase and glycogen synthase genes. Comp Biochem Physiol B Biochem Molec Biol 140(4):635–646. https://doi.org/10.1016/j.cbpc.2005.01.005

    Article  CAS  Google Scholar 

  • Boyd CE (1982) Water quality management for pond fish culture. Elsevier Scientific Publishing Company, Amsterdam, the Netherlands. p318. ISBN: 0444420541

  • Chen CC, Gong GC, Shiah FK (2007) Hypoxia in the East China Sea: one of the largest coastal low-oxygen areas in the world. Mar Environ Res 64:399–408. https://doi.org/10.1016/j.marenvres.2007.01.007

    Article  CAS  PubMed  Google Scholar 

  • Cooper RU, Clough LM, Farwell MA, West TL (2002) Hypoxia-induced metabolic and antioxidant enzymatic activities in the estuarine fish (Leiostomus xanthurus). J Exp Ma Biol Ecol 279:1–20. https://doi.org/10.1016/S0022-0981(02)00329-5

    Article  CAS  Google Scholar 

  • Diaz JR, Rosenberg R (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic marcofauna. Oceanogr Mar Biol Ann Rev 33:245–303

    Google Scholar 

  • Dotson RJ, Smith CR, Bueche K, Angles G, Pias SC (2017) Influence of cholesterol on the oxygen permeability of membranes: insight from atomistic simulations. Biophys J 112:2336–2347. https://doi.org/10.1016/j.bpj.2017.04.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrich J, Janssen F, Aleynik D, Bange HW, Boltacheva N, Çagatay MN, Dale AW, Etiope G, Erdem Z, Geraga M, Gilli A, Gomoiu MT, Hall POJ, Hansson D, He Y, Holtappels M, Kirf MK, Kononets M, Konovalov S, Lichtschlag A, Livingstone DM, Marinaro G, Mazlumyan S, Naeher S, North RP, Papatheodorou G, Pfannkuche O, Prien R, Rehder G, Schubert CJ, Soltwedel T, Sommer S, Stahl H, Stanev EV, Teaca A, Tengberg A, Waldmann C, Wehrli B, Wenzhöfer F (2014) Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon. Biogeosciences 11(4):1215–1259. https://doi.org/10.5194/bg-11-1215-2014

    Article  Google Scholar 

  • Gan L, Liu YJ, Tian LX, Yue YR, Yang HJ, Liu FJ, Chen YJ, Liang GY (2013) Effect of dissolved oxygen and dietary lysine levels on growth performance, feed conversion ratio and body composition of grass carp, Ctenopharyngodon idella. Aquac Nutr 19:860–869. https://doi.org/10.1111/anu.12030

    Article  CAS  Google Scholar 

  • Gu X, Xu Z (2011) Effect of hypoxia on the blood of large yellow croaker (Pseudosciaena crocea). Chin J Oceanol Limnol 29(3):524–530. https://doi.org/10.1007/s00343-011-0109-4

    Article  CAS  Google Scholar 

  • Hundt M, Schiffer M, Weiss M, Schreiber B, Kreiss CM, Schulz R, Gergs R (2015) Effect of temperature on growth, survival and respiratory rate of larval allis shad Alosa alosa. Knowl Manag Aquat Ecosyst 27:3–14. https://doi.org/10.1051/kmae/2015023

    Article  Google Scholar 

  • Huo D, Sun L, Ru X, Zhang L, Lin C, Liu S, Xin X, Yang H (2018) Impact of hypoxia stress on the physiological responses of sea cucumber Apostichopus japonicus: respiration, digestion, immunity and oxidative damage. PeerJ 6:e4651. https://doi.org/10.7717/peerj.4651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssens PA, Waterman J (1988) Hormonal regulation of gluconeogenesis and glycogenolysis in carp (Cyprinus carpio) liver pieces cultured in vitro. Comp Biochem Physiol A 91(3):451–455. https://doi.org/10.1016/0300-9629(88)90617-2

    Article  Google Scholar 

  • Jensen FB (2004) Red blood cell pH, the Bohr effect, and other oxygenation linked phenomena in blood O2 and CO2 transport. Acta Physiol Scand 182:215–227. https://doi.org/10.1111/j.1365-201X.2004.01361.x

    Article  CAS  PubMed  Google Scholar 

  • Jie Ding J, Liua C, Luoa S, Zhang Y, Gao X, Wu X, Shen W, Zhu J (2019) Transcriptome and physiology analysis identify key metabolic changes in the liver of the large yellow croaker (Larimichthys crocea) in response to acute hypoxia. Ecotoxicol Environ Saf 189:109957. https://doi.org/10.1016/j.ecoenv.109957

    Article  PubMed  Google Scholar 

  • Li MF (2010) Progress and perspective on research of Pelteobagrus fulvidraco (Richardson). Modern Fish Inform 25(9):17–22 (in Chinese with English Abstract)

    CAS  Google Scholar 

  • Li MF (2011) Progress and perspective on research of Pelteobagrus vachelli (Richardson). Modern Fish Inform 26:5–12 (in Chinese with English Abstract)

    Google Scholar 

  • Long Sun J, Lan Zhao L, WuH LQ, Liao L, Luo J, Qiang Lian W, Cui C, Jin L, Deng Ma J, Zhou Li M, Yang S (2019) Acute hypoxia changes the mode of glucose and lipid utilization in the liver of the largemouth bass (Micropterus salmoides). Sci Total Environ 713:135157. https://doi.org/10.1016/j.scitotenv.2019.135157

    Article  CAS  Google Scholar 

  • Lundgreen K, Kiilerich P, Tipsmark CK, Madsen SS, Jensen BF (2008) Physiological response in the European flounder (Platichthys flesus) to variable salinity and oxygen conditions. CompPhysiol B 178:909–915. https://doi.org/10.1007/s00360-008-0281-9

    Article  CAS  Google Scholar 

  • Mallya YJ, National K, Farming F, Division F (2007) The effects of dissolved oxygen on fish growth in aquaculture. UNU-Fisheries Training Programme. P.O. Box 1390, Skulagata 4, 120 Reykjavik, Iceland pp 1-30

  • Mark PS (1990) Hypoxia-induced physiological changes in two mangrove swamp fishes: sheepshead minnow, Cyprinodon variegatus Lacepede and Sailfin molly, Poecilia latipinna (Lesueur). Comp Biochem Physiol 97A:17–21

    Google Scholar 

  • Maulu S, Hasimuna OJ, Mphande J, Munang'andu HM (2021) Prevention and control of Streptococcosis in tilipia culture: a systematic review. J Aquat Anim Health:1–32. https://doi.org/10.1002/aah.10132

  • Mommsen TP, French CJ, Hochach PW (1980) Sites and patterns of protein and amino acid utilization during the spawning migration of salmon. Department of Zoology, University of British Colrrmhiu, Vnncorrrje, B.C. Cunada. Nat Res Council Canada 58:1785–1795

    CAS  Google Scholar 

  • Mustafa S, Estim A, Sitti Raehanah Shaleh M, Shapawi R (2018) Positioning of aquaculture in blue growth and sustainable development goals through new knowledge, ecological perspectives and analytical solutions. Aquacult Indonesiana 19(1):1–9. https://doi.org/10.21534/ai.v19i1.105

    Article  CAS  Google Scholar 

  • Ni M, Wen H, Li J, Chi M, Yan B, Ren Y, Zhang M, Song Z, Ding H (2014) The physiological performance and immune responses of juvenile Amur sturgeon (Acipenser schrenckii) to stocking density and hypoxia stress. Fish Shellfish Immunol 36:325–335. https://doi.org/10.1016/j.fsi.12.002

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Ding S, Ge J, Yan W, Hao Chen J, Huang Y (2008) Development of cryopreservation for maintaining yellow catfish (Pelteobagrus fulvidraco) sperm. Aquaculture 279:173–176. https://doi.org/10.1016/j.aquaculture.2008.03.037

    Article  CAS  Google Scholar 

  • Pan CH, Chien YH, Wang YJ (2010) The antioxidant capacity response to hypoxia stress during transportation of characins (Hyphessobrycon callistus Boulenger) fed diets supplemented with carotenoids. Aquac Res 41:973–981. https://doi.org/10.1111/j.1365-2109.2009.02380.x

    Article  CAS  Google Scholar 

  • Qian-Feng W, Shen W-L, Hou C-C, Cheng L, Wu X-F, Zhu J-Q (2017) Physiological responses and changes in gene expression in the large yellow croaker Larimichthys crocea following exposure to hypoxia. Chemosphere 169:418–427. https://doi.org/10.1016/j.chemosphere.2016.11.099

    Article  CAS  Google Scholar 

  • Qiang J, Yang H, Wang H, Kpundeh MD, Xu P (2013) Interacting effects of water temperature and dietary protein level on hematological parameters in Nile tilapia juveniles, Oreochromis niloticus (L.) and mortality under Streptococcus iniae infection. Fish Shellfish Immunol 34:8–16. https://doi.org/10.1016/j.fsi.2012.09.003

    Article  CAS  PubMed  Google Scholar 

  • Qiang J, Yang H, Ma XY, He J, Wang H, Kpundeh MD, Xu P (2016) Comparative studies on endocrine status and gene expression of hepatic carbohydrate metabolic enzymes in juvenile GIFT tilapia (Oreochromis niloticus) fed high-carbohydrate diets. Aquac Res 47:758–768. https://doi.org/10.1111/are.12534

    Article  CAS  Google Scholar 

  • Qiang J, Zhong CY, Bao JW, Liang M, Liang C, Tao YF, Li HX, He J, Xu P (2019) Synergistic effect of water temperature and dissolved oxygen concentration on rates of fertilization, hatching and deformity of hybrid yellow catfish (Tachysurus fulvidraco♀×Pseudobagrus vachellii♂). J Therm Biol 83:47–53. https://doi.org/10.1016/j.jtherbio.2019.05.003

    Article  PubMed  Google Scholar 

  • Renaud M (1986) Hypoxia in Louisiana coastal waters during 1983: implications for fisheries. Fish Bull 84(1):19–26

    Google Scholar 

  • Ritola O, Tossasvainen K, Kiuru T, Lindstorm-Seppa P, Molsa H (2002) Effect of continuous and episodic hyperoxia on stress and hepatic glutathione levels in one-summer old rainbow trout (Oncorhynchus mykiss). J Appl Ichthyol 18:159–164. https://doi.org/10.1046/j.1439-0426.2002.00324.x

    Article  Google Scholar 

  • Sheng Y, Yan Z, Zhou H, Xiong Y, Wei L, Jian Y (2019) Effects of acute hypoxic stress on biochemical parameters , immune regulation and metabolic capacity of the blood in genetically improved farmed tilapia (GIFT, Oreochromis niloticus). J Appl Ichthyol 35(4):978–986. https://doi.org/10.1111/jai.13930

    Article  CAS  Google Scholar 

  • Sun YY, Ying Y, Zhang JF, Yu HX, Wang XR, Wu JC, Xue YQ (2008) Hydroxyl radical generation and oxidative stress in Carassius auratus (italic) liver, exposed to pyrene. Ecotoxicol Environ Saf 71(2):446–453. https://doi.org/10.1016/j.ecoenv.2007.12.016

    Article  CAS  PubMed  Google Scholar 

  • Tran-Duy A, Schrama JW, Dam AA, Verreth JAJ (2008) Effects of oxygen concentration and body weight on maximum feed intake, growth and hematological parameters of Nile tilapia, Oreochromis niloticus. Aquaculture 275:152–162

    Article  Google Scholar 

  • Van Dam AA, Pauly D (1995) Simulation of the effects of oxygen on food consumption and growth of Nile tilapia, Oreochromis niloticus (L). Aquac Res 26:427–440

    Article  Google Scholar 

  • Van Kampen EJ, Zijlstra NC (1961) Determination of haemoglobin. Clin Chem Acta 5:719–720

    Google Scholar 

  • Wang Z, Wu Q, Zhou J, Ye Y (2004) Geographic distribution of Pelteobagrus fulvidraco and Pelteobagrus vachelli in the Yangtze River based on mitochondrial DNA markers. Biochem Genet 42:391–400

    Article  CAS  Google Scholar 

  • Wei H, He YC, Li QJ, Liu ZY, Wang HT (2007) Summer hypoxia adjacent to the Changjiang estuary. J Mar Syst 67:292–303

    Article  Google Scholar 

  • Wells R, Grigg G, Beard L, Summers G (1989) Hypoxic responses in a fish from a stable environment: blood oxygen transport in the antarctic fish Pagothenia Borchgrevinki. J Exp Biol 141:97–111

    Article  Google Scholar 

  • Wells RMG, Baldwinb TJ, Seymourc RS, Christian K, Brittain T (2005) Red blood cell function and Hematology in two tropical freshwater fishes from Australia. Comp Biochem Physiol A 141:87–93

    Article  CAS  Google Scholar 

  • Wu RSS (2002) Hypoxia: from molecular responses to ecosystem responses. Mar Pollut Bull 45:35–45

  • Wu RSS, Lam PKS, Wan KL (2002) Tolerance to, and avoidance of, hypoxia by the penaeid shrimp (Metapenaeus ensis). Environ Pollut 118:351–355

    Article  CAS  Google Scholar 

  • Yang S, Yan T, Wu H, Xiao Q, Fu HM, Luo J, Zhou J, Zhao LL, Wang Y, Yang SY, Sun JL, Ye X, Li S (2017) Acute hypoxic stress: effect on blood parameters, antioxidant enzymes, and expression of HIF-1alpha and GLUT-1 genes in largemouth bass (Micropterus salmoides). Fish Shellfish Immunol 67:449–458. https://doi.org/10.1016/j.fsi.2017.06.035

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Wu H, He K, Yan T, Zhou J, Zhao LL, Sun JL, Lian WQ, Zhang DM, Du ZJ, Luo W, He Z, Ye X, Li SJ (2019) Response of AMP-activated protein kinase and lactate metabolism of largemouth bass (Micropterus salmoides) under acute hypoxic stress. Sci Total Environ 666:1071–1079. https://doi.org/10.1016/j.scitotenv.02.236

    Article  CAS  PubMed  Google Scholar 

  • Yin F, Gong H, Ke Q, Li A (2015) Stress, antioxidant defence and mucosal immune responses of the large yellow croaker Pseudosciaena crocea challenged with Cryptocaryon irritans. Fish Shellfish Immunol 47:344–351

    Article  CAS  Google Scholar 

  • Zhang G, Mao J, Liang F, Chen J, Zhao C, Yin S, Wang L, Tang Z, Chen S (2016a) Modulated expression and enzymatic activities of Darkbarbel catfish Pelteobagrus vachelli for oxidative stress induced by acute hypoxia and reoxygenation. Chemosphere 151:271–279. https://doi.org/10.1016/j.chemosphere

    Article  CAS  PubMed  Google Scholar 

  • Zhang GS, Yin SW, Wang YY, Li L, Wang XL, Ding YD, Zang X, Zhang HW, Jia YH, Hu YL (2016b) The effects of water temperature and stocking density on survival, feeding and growth of the juveniles of the hybrid yellow catfish from Pelteobagrus fulvidraco × Pelteobagrus vachelli. Aquac Res 134(9):402–413

    Google Scholar 

  • Zheng BS, Dai DY (1999) Bagridae. In: Chu X, Zheng B, Dai D (eds) Fauna Sinica, Osteichthyes, Siluriformes. Science Press, Beijing, China, pp 40–42

    Google Scholar 

  • Zou EM, Du NS, Lai W (1996) The effects of severe hypoxia on lactate and glucose concentrations in the blood of the chinese freshwater crab Eriocheir sinensis (Crustacea: Decapoda). Comp Biochem Physiol 114A:105–109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank the staffs of Fish Biotechnology Research Laboratory for their help with the experiment.

Funding

This study was supported by the Central Public interest Scientific Institution Basal Research Fund, CAFS [Grant no. 2020JBFR04] and the Natural Science Foundation of Jiangsu Province, China [Grant no. BK20181137].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Qiang or Pao Xu.

Ethics declarations

Ethics approval

The methods and protocols used in this study agree with the Guidelines for Experimental Animals established by the National Ministry of Science and Technology (Beijing, China) and the Freshwater Fisheries Research Centre of the Chinese Academy of Fisheries Sciences, Wuxi (Jiangsu, China). The ethics approval number for this experiment is 2019-034. The fish were maintained in well-aerated water and treated with 200 mg/L tricaine methane sulfonate (Sigma, St Louis, MO, USA) for rapid deep anesthesia. The samples were extracted based on the guide for the care and use of Laboratory Animals in China.

Conflict of interest

The authors declare no competing interests.

Additional information

Handling Editor: Simon Goddek

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Aquaponics and Biofloc

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagoudo, M., Qiang, J., Bao, JW. et al. Effects of acute hypoxia stress on hemato-biochemical parameters, oxidative resistance ability, and immune responses of hybrid yellow catfish (Pelteobagrus fulvidraco × P. vachelli) juveniles. Aquacult Int 29, 2181–2196 (2021). https://doi.org/10.1007/s10499-021-00742-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-021-00742-1

Keywords

Navigation