Skip to main content

Advertisement

Log in

Usage of plant natural products for prevention and control of white feces syndrome (WFS) in Pacific whiteleg shrimp Litopenaeus vannamei farming in India

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

White feces syndrome (WFS) causes severe economic damages in Litopenaeus vannamei culture by the microsporidian parasite, Enterocytozoon hepatopenaei (EHP), and it affects mainly hepatopancreas leading to digestive and absorptive problems, and finally the shrimp have poor growth and immune suppression. By improving the health status of hepatopancreas and digestive systems, the disease may be reduced or controlled by alternative approaches especially treating with herbal active principles. The herbal active characteristics like hepatoprotective activity, antioxidants, appetizers, and digestive and growth promoters highly reduce or control the EHP problems due to the broad diversity of active compounds in herbal products. In the present review, we discussed the use, formulation, and method of application of the herbal extracts like Citrus limon, Allium sativum, Zingiber officinale, Borassus flabellifer, and Vigna mungo in Indian L. vannamei culture systems by the farmers against white feces syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Hafeez EHA, Ahmad AK, Kamal AM, Belal US, Mowafy NME (2016) Anti-Giardia lamblia activity of ginger (Zingiber officinale) extract in an improved modified axenic culture. Parasitol Unit J 9(1):7–12

    Google Scholar 

  • Adewunmi CO, Gtuitimein OBO, Furu P (1990) Molluscicidal and antischistosomal activities of Zingiber officinale. Planta Med 56:374–376

    PubMed  CAS  Google Scholar 

  • Ahmed RS, Suke SG, Seth V, Chakraborti A, Tripathi AK (2008) Protective effects of dietary ginger (Zingiber officinale) on lindane-induced oxidative stress in rats. Phytother Res 22:902–906

    PubMed  CAS  Google Scholar 

  • Akinloye OA, Somade OT, Akindele AS, Adelabu KB, Elijah FT, Adewumi OJ (2014) Anticlastogenic and hepatoprotective properties of ginger (Zingiber officinale) extract against nitrobenzene-induced toxicity in rats. Rom J Biochem 51(1):3–15

    Google Scholar 

  • Ali AS, Fahmy GE (2009) Effects of water extracts of thyme (Thymus vulgaris) and ginger (Zingiber officinale Roscoe) on alcohol abuse. Food Chem Toxicol 47:1945–1949

    Google Scholar 

  • Al-Snafi A (2016) Nutritional value and pharmacological importance of citrus species grown in Iraq. IOSR J Pharm 6(8):76–108

    CAS  Google Scholar 

  • Anon (2008) Citrus - Limon (L.) Burm. f. (pro sp.) [ medica - aurantifolia ]. USDA, NRCS. The PLANTS database (http://plants.usda.gov, 8 September 2008). National Plant Data Center, Baton Rouge

  • Bahmani M, Abbasi J, Mohsenzadegan A, Sadeghian S, Ahangaran MG (2013) Allium sativum L.: the anti-immature leech (Limnatis nilotica) activity compared to Niclosomide. Comp Clin Pathol 22:165–168

    CAS  Google Scholar 

  • Baliga MS, Haniadka R, Pereira MM, D'Souza JJ, Pallaty PL (2011) Update on the chemopreventive effects of ginger and its phytochemicals. Crit Rev Food Sci Nutr 51:499–523

    PubMed  CAS  Google Scholar 

  • Banerjee SK, Mukherjee PK, Maulik SK (2003) Garlic as an antioxidant: the good, the bad and the ugly. Phytother Res 17:97–106

    PubMed  CAS  Google Scholar 

  • Bhavsar SK, Joshi P, Shah M, Santani DD (2007) Investigation into hepatoprotective activity of Citrus limon. Int J Pharmacogn 45(4):303–311

    CAS  Google Scholar 

  • Block E (2010) Garlic and other alliums: the lore and the science. R Soc Chem:5–6

  • Casimiro M, Franchesca M, Gutierrez M, Leano DR, Judilynn N, Solidum E (2010) Evaluation of the hepatoprotective activity of Citrus microcarpa Bunge (Family Rutaceae) fruit peel against acetaminophen-induced liver damage in male BFAD- Sprague Dawley rats. Int J Chem Environ Eng 1:2

    Google Scholar 

  • Chandrasekharappa G (1979) Nutritional quality of the proteins of blends of wheat and rice with Bengal gram, red gram or black gram. Nutr Rep Int 19(3):401–410

    CAS  Google Scholar 

  • Choi WH, Jiang MH, Chu JP (2013) Antiparasitic effects of Zingiber officinale (ginger) extract against Toxoplasma gondii. J Appl Biomed 11:15–26

    Google Scholar 

  • Chrubasik S, Pittler MH, Roufogalis BD (2005) Zingiberis rhizoma: a comprehensive review on the ginger effect and efficacy profiles. Phytomedicine 12:684–701

    PubMed  CAS  Google Scholar 

  • Coghe S, Benoot K, Delvaux F, Vanderhaegen B, Delvaux FR (2004) Ferulic acid release and 4- vinylguaiacal formation during brewing and fermentation: indications for feruloyl esterase activity in Saccharomyces cerevisiae. J Agric Food Chem 52:602–608

    PubMed  CAS  Google Scholar 

  • Devi NKD, Suresh G, Pravallika M, Poojitha J, Murthy M, Sree VK (2014) Antioxidant and anthelmintic potential of Borassus flabellifer kernel peels. Res J Pharmacogn Phytochem 6(4):181–186

    Google Scholar 

  • Durai V, Gulan B, Johnson M, Maheswari ML, Pravin kumar M (2015) Effect on white gut and white feces disease in semi intensive Litopenaeus vannamei shrimp culture system in south Indian state of Tamilnadu. Int J Mar Sci 5(14):1–5

    Google Scholar 

  • Edward Group DC (2016) The health benefits of garlic: nature’s best medicine, Global Health Center. https://www.globalhealingcenter.com/natural-health/health-benefits-of-garlic/

  • El-Sharaky AS, Newairy AA, Kamel MA, Eweda SM (2009) Protective effect of ginger extract against bromobenzene-induced hepatotoxicity in male rats. Food Chem Toxicol 47(7):1584–1590

    PubMed  CAS  Google Scholar 

  • Ezeasuka FJ, Ezejindu DN, Akudike CJ, Ndukwe GU (2015) Hepatoprotective effects of ginger (Zingiber officinale) on mercury-induced hepatotoxicity in adult female Wistar rats. Adv Life Sci Technol 39:7–12

    Google Scholar 

  • Fareed G, Scolaro M, Jordan W, Sanders N, Chesson C, Slattery M (1996) The use of a high-dose garlic preparation for the treatment of Cryptosporidium parvum diarrhea. Int Conf AIDS 11:288

    Google Scholar 

  • Gazi MR, Hoshikuma A, Kanda K, Murata A, Kato F (2001) Detection of free radical scavenging activity in yeast culture. Bull Fac Agric Saga Univ 86:67–74

    CAS  Google Scholar 

  • Gupta S (2009) Antioxidant activity of Murraya Koenigii Linn leaves. [Internet] Available from http://www.pharmacologyonline.com 1: 474-478

  • Haksar A, Sharma A, Chawla R, Kumar R, Arora R, Singh S (2006) Zingiber officinale exhibits behavioral radio protection against radiation-induced CTA in a gender-specific manner. Pharmacol Biochem Behav 84(2):179–188

    PubMed  CAS  Google Scholar 

  • Hernandez LF, Espinosa JC, Fernandez-Gonzalez M, Briones A (2003) β-Glucosidase activity in Saccharomyces cerevisiae wine strain. Int J Food Microbiol 80:171–176

    PubMed  CAS  Google Scholar 

  • Hsouna AB, Halima NB, Smaoui S, Hamdi N (2017) Citrus lemon essential oil: chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids Health Dis 16:146

    PubMed  PubMed Central  Google Scholar 

  • Iciek M, Kwiecien I, Wlodek L (2009) Biological properties of garlic and garlic-derived organosulfur compounds. Environ Mol Mutagen 50(3):247–265

    PubMed  CAS  Google Scholar 

  • Ide N, Lau BH (1997) Garlic compounds protect vascular endothelial cells from oxidized low density lipoprotein-induced injury. J Pharm Pharmacol 49(9):908–911

    PubMed  CAS  Google Scholar 

  • Jaiswal SK, Vivek K, Gupta J, Siddiqi JN, Pandey S, Sharma B (2015) Hepatoprotective effect of Citrus limon fruit extract against carbofuran induced toxicity in Wistar rats. Chin J Biol 686071:10

    Google Scholar 

  • Jeena KB, Liju V, Kuttana R (2015) Antitumor and cytotoxic activity of ginger essential oil (Zingiber Officinale Roscoe). Int J Pharm Pharm Sci 7:341–344

    CAS  Google Scholar 

  • Joe Leech MS (2017) Proven health benefits of ginger. https://www.heaithline.com/nutrition/11-proven-benefits-of-ginger

  • Kalesaraj R (1975) Screening of some indigenous plants for anthelmintic action against human Ascaris lumbricoides. Part II. Indian J Physiol Pharmacol 19:47–49

    Google Scholar 

  • Kemper KJ (2000) Garlic (Allium sativum). The Longwood Herbal Task Force and the Center for Holistic Pediatric Education and Research 1-49

  • Khandagle AJ, Tare VS, Raut KD, Morey RA (2011) Bioactivity of essential oils of Zingiber officinale and Achyranthes aspara against mosquitoes. Parasitol Res 109:339–343

    PubMed  Google Scholar 

  • Khushtar M, Kumar V, Javed K, Bhandari U (2009) Protective effect of ginger oil on aspirin and pylorus ligation induced gastric ulcer model in rats. Int J Pharm Pharm Sci 71:554–558

    CAS  Google Scholar 

  • Kim JK, Kim Y, Na KM, Surh YJ, Kim TY (2007) [6]-Gingerol prevents UVB-induced ROS production and COX-2 expression in vitro and in vivo. Free Radic Res 41:603–614

    PubMed  CAS  Google Scholar 

  • Li H, Cao D, Yi J, Cao J, Jiang W (2012) Identification of the flavonoids in mungbean (Phaseolus radiatus L) soup and their antioxidant activities. Food Chem 135(4):2942–2946

    PubMed  CAS  Google Scholar 

  • Mardomi R (2017) Determining the chemical compositions of garlic plant and its existing active element. IOSR J Appl Chem 10(1):63–66

    CAS  Google Scholar 

  • Martin RJ (1997) Mode of action of anthelmintic drugs. Veterinary Journal 154:11–34

    PubMed  CAS  Google Scholar 

  • Mehta JJA, Shukla S, Mehta P (2009) A reporton anthelmintic activity of Cassia tora leaves. J Sci Technol 31(3):269–271

    Google Scholar 

  • Melzig M, Bader G, Loose R (2001) Investigations of the mechanism of membrane activity of selected triterpenoid saponins. Planta Med 67(1):43–48

    PubMed  CAS  Google Scholar 

  • Micklefield GH, Redeker Y, Meister V, Jung O, Greving I, May B (1999) Effect of ginger on gastroduodenal motility. Int J Clin Pharmacol Ther 13(7):341–346

    Google Scholar 

  • Mirelman D, Monheit D, Varon S (1987) Inhibition of growth of Entamoeba histolytica by Allicin, the active principle of garlic extract (Allium sativum). J Infect Dis 156:243–244

    PubMed  CAS  Google Scholar 

  • Nadkarni KM (1976) Indian Materia Medica, vol I & ii. Popular Prakashan Private Ltd, Bombay

    Google Scholar 

  • Naji KM, Al-Shaibani ES, Alhadi FA, Al-Soudi SA, D’souza MR (2017) Hepatoprotective and antioxidant effects of single clove garlic against CCl4-induced hepatic damage in rabbits. BMC Complement Altern Med 17:411

    PubMed  PubMed Central  Google Scholar 

  • Naknean P, Meenune M (2011) Characteristics and antioxidant activity of palm sugar syrup produced in Songkhla Province, Southern Thailand. Asian J Food Ag-Ind 4(04):204–212

    Google Scholar 

  • Nasiru A, Hafsat IG, Mohammad MM, Sabo AA (2012) Hepatoprotective effect of garlic homogenate co-administered with anti-tuberculosis drugs in rat liver enzymes. Int J Biosci Biochem Bioinformat 2:5

    Google Scholar 

  • Nitin M, Ifthekar SQ, Mumtaz M (2012) Evaluation of hepatoprotective and nephroprotective activity of aqueous extract of Vigna mungo (Linn.) Hepper on rifampicin-induced toxicity in albino rats. Int J Health Allied Sci 1:2

    Google Scholar 

  • Otta SK, Patil PK, Jithendran KP, Rajendran KV, Alavandi SV, Vijayan KK (2016) Managing Enterocytozoon hepatopenaei (EHP), microsporidial infections in Vannamei shrimp farming. An advisory, CIBA e-publication No.29

  • Patel J, Kumar GS, Qureshi MS, Jena PK (2010) Anthelminitic activity of ethanolic extract of whole of Eupatorium odoratum. Int J Phytomed 2:127–132

    Google Scholar 

  • Pramod HJ, Yadav AV, Raje VN, Mohite M (2013) Antioxidant activity of Borassus flabellifer (Linn.) fruit. Asian J Pharm Technol 3(1):16–19

    Google Scholar 

  • Prokudina E, Havlíček L, Al-Maharik N, Lapčík O, Strnad M, Gruz J (2012) Rapid UPLC–ESI–MS/MS method for the analysis of isoflavonoids and other phenylpropanoids. J Food Compos Anal 26:36–42

    CAS  Google Scholar 

  • Rahman MM, Fazlic V, Saad NW (2012) Antioxidant properties of raw garlic (Allium sativum) extract. Int Food Res J 19(2):589–591

    CAS  Google Scholar 

  • Ramesh K, Perumal M, Rajeshkumar S (2015) Anti- hepatotoxic effect of fresh citrus leaves extraction carbon trtrachloride induced toxicity in albino rats. World J Pharm Sci 4(11):1073–1080

    CAS  Google Scholar 

  • Ramya S (2018) Review on traditional and phyto-pharmacological aspects of Borassus flabellifer (Palmyra Tree). Int J Rev Pharmcol Health Res 1(1)

  • Rastogi RP, Mehrotra BN (1993) Compendium of Indian medicinal plants, vol II. CDRI, Lucknow, p 212

    Google Scholar 

  • Rhadakrishnan M (2017) 33 marvelous benefits of jaggery (gur) for skin and health. http://www.stylecraze.com/articles/marvelous-benefits-of-jaggery-for-skin-and-health/#gref

  • Rivlin R (2001) Historical perspective on the use of garlic. J Nutr 131:951S–954S

    PubMed  CAS  Google Scholar 

  • Roy H, Chakraborty A, Bhanja S, Nayak BS, Mishra SR, Ellaiah P (2010) Preliminary phytochemical investigation and anthelmintic activity of Acanthospermum hispidum DC. J Pharm Sci Technol 25(5):217–221

    Google Scholar 

  • Sahni C, Shakil NA, Jha V, Gupta RK (2014) Screening of nutritional, phytochemical, antioxidant and antibacterial activity of the roots of Borassus flabellifer (Asian palmyra palm). J Pharmacogn Phytochem 3(4):58–68

    Google Scholar 

  • Sandhya S, Sudhakar K, Banjil D, Rao KNV (2010) Pharmacognostical standardization of Borassus flabellifer root. Ann Biol Res 1(4):85–94

    Google Scholar 

  • Saranya K, Sivakumar G, Gopalasatheeskumar K, Arulkumaran G (2019) An updated overview on phytochemical screening and pharmacological screening of Borassus flabellifer Linn. Pharma Tutor 7(5):15–19

    Google Scholar 

  • Sekiwa Y, Kubota K, Kobayashi A (2000) Isolation of novel glucosides related to gingerdiol from ginger and their antioxidative activities. Agric Food Chem 48:373–377

    CAS  Google Scholar 

  • Shakya SR (2015) Medicinal uses of ginger (Zingiber officinale Roscoe) improves growth and enhances immunity in aquaculture. Int J Chem Stud 3(2):83–87

  • Shrivastava V, Purwal L, Jain UK (2010) In vitro Pediculicidal activity of juice of Citrus limon. Int J Pharm Tech Res 2(3):1792–1795

    Google Scholar 

  • Solanki YB, Jain SM (2011) Hepatoprotective effects of Clitoria ternatea and Vigna mungo against acetaminophen and carbon tetrachloride- induced hepatotoxicity in rats. J Pharmacol Toxicol 6(1):30–48

    Google Scholar 

  • Soris TP, Kamatchi Kala B, Mohan VR, Vadivel V (2010) The biochemical composition and nutritional potential of three varieties of Vigna mungo (L.) Hepper. Adv Biosearch 1(2):6–16

    Google Scholar 

  • Sriurairatana S, Boonyawiwat V, GangnonngiwW, Laosutthipong C, Hiranchan J, Flegel TW (2014) White feces syndrome of shrimp arises from transformation, sloughing and aggregation of hepatopancreatic microvilli into vermiform bodies superficially resembling gregarines. Plos One 9(6):e99170

    PubMed  PubMed Central  Google Scholar 

  • Stepek G, Lowe AE, Buttle DJ, Duce IR, Behnke JM (2006) In vitro and In vivo anthelmintic efficacy of plant cysteine proteinases against the rodent gastrointestinal nematode, Trichuris muris. Parasitology 132:681–689

    PubMed  CAS  Google Scholar 

  • Sukumaran V, Park SC, Giri SS (2016) Role of dietary ginger Zingiber officinale in improving growth performances and immune functions of Labeo rohita fingerlings. Fish Shellfish Immunol 57:362–370

    PubMed  CAS  Google Scholar 

  • Talpur AD, Ikhwanuddin M, Ambok Bolong AM (2013) Nutritional effects of ginger (Zingiber officinale Roscoe) on immune response of Asian sea bass, Lates calcarifer (Bloch) and disease resistance against Vibrio harveyi. Aquaculture 400–401:46–52

    Google Scholar 

  • Tang D, Dong Y, Ren H, Li L, He C (2014) A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem Central J 8(4):2–9

    Google Scholar 

  • Tiwari GN, Kumar S, Prakash O (2004) Evaluation of convective mass transfer coefficient during drying of Jaggery. J Food Eng 63:219–227

    Google Scholar 

  • Troell M, Naylor RL, Metian M, Beveridge M, Tyedmers PH, Folke C, Arrow KJ, Barrett S, Crépin A, Ehrlich RR, Gren Å, Kautsky N, Levin SA, Nyborg K, Österblom H, Polasky S, Scheffer M, Walker BH, Xepapadeas T, de Zeeuwp A (2014) Does aquaculture add resilience to the global food system? Proc Natl Acad Sci U S A 111(37):13257–13263

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vengaiah PC, Ravindrababu D, Murthy GN, Prasad KR (2013) Jaggery from palmyrah palm (Borassus flabellifer L.) – present status and scope. Indian J Tradit Knowl 12(4):714–717

    Google Scholar 

  • Venketramalingam K, Christopher JG, Citarasu T (2007) Zingiber officinalis an herbal appetizer in the tiger shrimp Penaeus monodon (Fabricius) larviculture. Aquac Nutr 13(6):439–443

    Google Scholar 

  • Vijayakumari B, Vengaiah PC, Kiranmayi P (2015) Qualitative phytochemical screening, GC-MS analysis and antibacterial activity of palmyra fruit pulp (Borassus flabellifer L.). Int J Pharm Bio Sci 6(2):430–435

    CAS  Google Scholar 

  • Wang M, Gillaspie A, Morris J, Pittman R, Davis J, Pederson G (2008) Flavonoid content in different legume germplasm seeds quantified by HPLC. Plant Gen Res Charact Util 6:62–69

    CAS  Google Scholar 

  • Yao Y, Yang X, Tian J, Liu C, Cheng X, Ren G (2013) Antioxidant and antidiabetic activities of black mung bean (Vigna radiata L.). J Agric Food Chem 61(34):8104–8109

    PubMed  CAS  Google Scholar 

  • Yin MC, Cheng WS (2003) Antioxidant and antimicrobial effects of four garlic-derived organosulfur compounds in ground beef. Meat Sci 63:23–28

    PubMed  Google Scholar 

  • Zayed AA, Saeed RMA, El Namaky AH, Ismail HM, Mady HY (2009) Influence of Allium sativum and Citrus limom oil extracts and Bacillus thuringiensis Israelensis on some biological aspects of Culex pipiens larvae (Diptera: Culicidae). World J Zool 4(2):109–121

    Google Scholar 

  • Zenner L, Callait MP, Granier C, Chauve C (2003) In vitro effect of essential oils from Cinnamomum aromatium , Citrus limon and A llium sativum on two intestinal flagellates o f poultry, Tetratrichomonas gallinarum and Histomonas meleagridis. Parasite 10:153–157

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thavasimuthu Citarasu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palanikumar, P., Wahjuningrum, D., Abinaya, P. et al. Usage of plant natural products for prevention and control of white feces syndrome (WFS) in Pacific whiteleg shrimp Litopenaeus vannamei farming in India. Aquacult Int 28, 113–125 (2020). https://doi.org/10.1007/s10499-019-00448-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-019-00448-5

Keywords

Navigation