Skip to main content
Log in

Effects on lipid metabolism and expression of PPARα and FABP of Schizothorax prenanti by oxidized Konjac glucomannan

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Prenant’s schizothoracin (Schizothorax prenanti) is an important existemic commercial fish in Yangtze River. Oxidized Konjac glucomannan (OKGM) is a kind of polysaccharide oxidative produced by degradation of KGM. A total of 500, 1000, 2000, 4000, and 8000 mg/kg OKGM were separately added to diets of S. prenanti. After 60 days of feeding trial, examinations were performed to determine activities of hepatic lipase (HL) lipoprotein lipase (LPL), contents of triglyceride (TG), total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL) in serum, relative expressions of peroxisome proliferator activated receptor-α (PPARα) and fatty-acid-binding proteins (FABPs) of in muscle and hepatopancreas, lipids in fish meat, and fatty acids in lipids. Results showed that addition of 8000 mg/kg OKGM to diets of S. prenanti resulted in significantly higher activities of HL and LPL; significantly lower contents of TG, TC, and LDL; and significantly higher amounts of HDL (P < 0.05). Relative expressions of PPARα were significantly higher in hepatopancreas and back muscle. Fish meat contained significantly lower lipid contents, significantly higher levels of unsaturated fatty acids, and significantly lower amounts of saturated fatty acids (P < 0.05). Total contents of eicosapentaenoic acid, docosahexaenoic acid, and linolenic acid were significantly higher (P < 0.05). Lipids in muscles were significantly less than those of the control group (P < 0.05). Therefore, addition of OKGM to diets of S. prenanti affected lipid metabolism, and a significant effect was attained when the dose reached 8000 mg/kg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aleshin S, Strokin M, Sergeeva M, Reiser G (2013) Peroxisome proliferator-activated receptor (PPAR) β/δ, a possible nexus of PPARα-and PPARγ-dependent molecular pathways in neurodegenerative diseases: review and novel hypotheses. Neurochem Int 63:322–330

    Article  CAS  PubMed  Google Scholar 

  • Ananda BV, Sawler DL, Wright JM (2013) Tissue-specific transcriptional modulation of fatty acid-binding protein genes, fabp2, fabp3 and fabp6, by fatty acids and the peroxisome proliferator, clofibrate, in zebrafish (Danio rerio). Gene 520(1):14–21

  • Bai JL, Xu HW, Zang RX, He HJ, Cai Y, Cao X, Peng FJ, Han J, Wu JP, Yang JT (2013) Cloning of the heart fatty acid-binding protein (H-FABP) gene and its tissue-specific expression profile in the Lanzhou fat-tailed sheep, Ovis aries. Small Rumin Res 1:114–122

    Article  Google Scholar 

  • Batista-Pinto C, Rodrigues P, Rocha E, Lobo-da-Cunha A (2005) Identification and organ expression of peroxisome proliferator activated receptors in brown trout (Salmo trutta f. Fario). Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression 1731:88–94

    Article  CAS  Google Scholar 

  • Bilbao E, Raingeard D, de Cerio OD, Ortiz-Zarragoitia M, Ruiz P, Izagirre U, Orbea A, Marigómez I, Cajaraville M, Cancio I (2010) Effects of exposure to prestige-like heavy fuel oil and to perfluorooctane sulfonate on conventional biomarkers and target gene transcription in the thicklip grey mullet Chelon labrosus. Aquat Toxicol 98:282–296

    Article  CAS  PubMed  Google Scholar 

  • Bozza PT, Magalhães KG, Weller PF (2009) Leukocyte lipid bodies—biogenesis and functions in inflammation. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1791:540–551

    CAS  Google Scholar 

  • Capobianco E, Martínez N, Fornes D, Higa R, Di Marco I, Basualdo MN, Faingold MC, Jawerbaum A (2013) PPAR activation as a regulator of lipid metabolism, nitric oxide production and lipid peroxidation in the placenta from type 2 diabetic patients. Mol Cell Endocrinol 377:7–15

    Article  CAS  PubMed  Google Scholar 

  • Cho HK, Kong HJ, Kim HY, Cheong J (2012) Characterization of Paralichthys olivaceus peroxisome proliferator-activated receptor-α gene as a master regulator of flounder lipid metabolism. Gen Comp Endocrinol 175:39–47

    Article  CAS  PubMed  Google Scholar 

  • Chua M, Baldwin TC, Hocking TJ, Chan K (2010) Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex NE Br. J Ethnopharmacol 128:268–278

    Article  PubMed  Google Scholar 

  • Chua M, Chan K, Hocking TJ, Williams PA, Perry CJ, Baldwin TC (2012) Methodologies for the extraction and analysis of konjac glucomannan from corms of Amorphophallus konjac K. Koch. Carbohydr Polym 87:2202–2210

    Article  CAS  Google Scholar 

  • Cocci P, Mosconi G, Palermo FA (2013) Effects of 4-nonylphenol on hepatic gene expression of peroxisome proliferator-activated receptors and cytochrome P450 isoforms (CYP1A1 and CYP3A4) in juvenile sole (Solea solea). Chemosphere 93:1176–1181

    Article  CAS  PubMed  Google Scholar 

  • Conterno L, Fava F, Viola R, Tuohy KM (2011) Obesity and the gut microbiota: does up-regulating colonic fermentation protect against obesity and metabolic disease? Genes Nutr 6:241–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson B, Selvan SP, Ko KW, Kelly K, Quiroga AD, Li L, Nelson R, King-Jones K, Jacobs RL, Lehner R (2013) Endoplasmic reticulum-localized hepatic lipase decreases triacylglycerol storage and VLDL secretion. Biochim Biophys Acta 1831:1113–1123

    Article  CAS  PubMed  Google Scholar 

  • Esteves A, Ehrlich R (2006) Invertebrate intracellular fatty acid binding proteins. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 142:262–274

    Google Scholar 

  • Fang W, Wu P (2004) Variations of konjac glucomannan (KGM) from Amorphophallus konjac and its refined powder in China. Food Hydrocoll 18:167–170

    Article  CAS  Google Scholar 

  • Garénaux A, Houle S, Folch B, Dallaire G, Truesdell M, Lépine F, Doucet N, Dozois CM (2013) Avian lipocalin expression in chickens following Escherichia coli infection and inhibition of avian pathogenic Escherichia coli growth by ex-FABP. Vet Immunol Immunopathol 152:156–167

    Article  PubMed  Google Scholar 

  • He S, Liang X, Qu C, Huang W, Shen D, Zhang W, Mai K (2012) Identification, organ expression and ligand-dependent expression levels of peroxisome proliferator activated receptors in grass carp (Ctenopharyngodon idella). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 155:381–388

    CAS  Google Scholar 

  • Kaneko G, Yamada T, Han Y, Hirano Y, Khieokhajonkhet A, Shirakami H, Nagasaka R, Kondo H, Hirono I, Ushio H (2013) Differences in lipid distribution and expression of peroxisome proliferator-activated receptor gamma and lipoprotein lipase genes in torafugu and red seabream. Gen Comp Endocrinol 184:51–60

    Article  CAS  PubMed  Google Scholar 

  • Keithley J, Swanson B (2005) β-Glucomannan and obesity: a critical review. Alternatives Therapies in Health and Medicine 11:30–34

    Google Scholar 

  • Kendall AC, Nicolaou A (2013) Bioactive lipid mediators in skin inflammation and immunity. Prog Lipid Res 52:141–164

    Article  CAS  PubMed  Google Scholar 

  • Kjaer M, Vegusdal A, Gjøen T, Rustan A, Todorčević M, Ruyter B (2008) Effect of rapeseed oil and dietary n-3 fatty acids on triacylglycerol synthesis and secretion in Atlantic salmon hepatocytes. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1781:112–122

    CAS  Google Scholar 

  • Kondo H, Misaki R, Gelman L, Watabe S (2007) Ligand-dependent transcriptional activities of four torafugu pufferfish Takifugu rubripes peroxisome proliferator-activated receptors. Gen Comp Endocrinol 154:120–127

    Article  CAS  PubMed  Google Scholar 

  • Kraemer WJ, Vingren JL, Silvestre R, Spiering BA, Hatfield DL, Ho JY, Fragala MS, Maresh CM, Volek JS (2007) Effect of adding exercise to a diet containing glucomannan. Metab Clin Exp 56:1149–1158

    Article  CAS  PubMed  Google Scholar 

  • Lai YY, Lubieniecki KP, Koop BF, Davidson WS (2012) Characterization of the Atlantic salmon (Salmo salar) brain-type fatty acid binding protein (fabp7) genes reveals the fates of teleost fabp7 genes following whole genome duplications. Gene 504:253–261

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Liu Y, Zhang X, Zhang X, Yue B, Song Z (2011) An observation of the loss of genetic variability in prenant’s schizothoracin, Schizothorax prenanti, inhabiting a plateau lake. Biochem Syst Ecol 39:361–370

    Article  CAS  Google Scholar 

  • Maradonna F, Evangelisti M, Gioacchini G, Migliarini B, Olivotto I, Carnevali O (2013) Assay of vtg, ERs and PPARs as endpoint for the rapid in vitro screening of the harmful effect of di-(2-ethylhexyl)-phthalate (DEHP) and phthalic acid (PA) in zebrafish primary hepatocyte cultures. Toxicol in Vitro 27:84–91

    Article  CAS  PubMed  Google Scholar 

  • Michot C, Mamoune A, Vamecq J, Viou MT, Hsieh L, Testet E, Lainé J, Hubert L, Dessein A, Fontaine M (2013) Combination of lipid metabolism alterations and their sensitivity to inflammatory cytokines in human lipin-1-deficient myoblasts. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1832:2103–2114

    Article  CAS  Google Scholar 

  • Mimeault C, Trudeau V, Moon T (2006) Waterborne gemfibrozil challenges the hepatic antioxidant defense system and down-regulates peroxisome proliferator-activated receptor beta (PPARβ) mRNA levels in male goldfish (Carassius auratus). Toxicology 228:140–150

    Article  CAS  PubMed  Google Scholar 

  • Niot I, Poirier H, Tran TTT, Besnard P (2009) Intestinal absorption of long-chain fatty acids: evidence and uncertainties. Prog Lipid Res 48:101–115

    Article  CAS  PubMed  Google Scholar 

  • Oku H, Umino T (2008) Molecular characterization of peroxisome proliferator-activated receptors (PPARs) and their gene expression in the differentiating adipocytes of red sea bream Pagrus major. Comp Biochem Physiol B: Biochem Mol Biol 151:268–277

    Article  Google Scholar 

  • Parmar MB, Venkatachalam AB, Wright JM (2012) Comparative genomics and evolutionary diversification of the duplicated fabp6a and fabp6b genes in medaka and three-spined stickleback. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 7:311–321

    CAS  Google Scholar 

  • Pérez-Sánchez J, Borrel M, Bermejo-Nogales A, Benedito-Palos L, Saera-Vila A, Calduch-Giner JA, Kaushik S (2013) Dietary oils mediate cortisol kinetics and the hepatic mRNA expression profile of stress-responsive genes in gilthead sea bream (Sparus aurata) exposed to crowding stress. Implications on energy homeostasis and stress susceptibility. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 8:123–130

    Google Scholar 

  • Petrescu AD, McIntosh AL, Storey SM, Huang H, Martin GG, Landrock D, Kier AB, Schroeder F (2013) High glucose potentiates L-FABP mediated fibrate induction of PPARα in mouse hepatocytes. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1831:1412–1425

    CAS  Google Scholar 

  • Qi Z, Liu Y, Wang W, Xin Y, Xie F, Wang A (2012) Fatty acid binding protein 10 in the orange-spotted grouper (Epinephelus coioides): characterization and regulation under pH and temperature stress. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 155:447–455

    CAS  Google Scholar 

  • Raingeard D, Cancio I, Cajaraville MP (2009) Cloning and expression pattern of peroxisome proliferator-activated receptors, estrogen receptor α and retinoid X receptor α in the thicklip grey mullet Chelon labrosus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 149:26–35

    Google Scholar 

  • Ren Q, Du Z, Zhao X, Wang J (2009) An acyl-CoA-binding protein (FcACBP) and a fatty acid binding protein (FcFABP) respond to microbial infection in Chinese white shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol 27:739–747

    Article  CAS  PubMed  Google Scholar 

  • Ringseis R, Keller J, Lukas I, Spielmann J, Most E, Couturier A, König B, Hirche F, Stangl GI, Wen G (2013) Treatment with pharmacological PPARα agonists stimulates the ubiquitin proteasome pathway and myofibrillar protein breakdown in skeletal muscle of rodents. Biochimica et Biophysica Acta (BBA)-General Subjects 1830:2105–2117

    Article  CAS  Google Scholar 

  • Shin SS, Jung YS, Yoon KH, Choi S, Hong Y, Park D, Lee H, Seo BI, Lee HY, Yoon M (2010) The Korean traditional medicine Gyeongshingangjeehwan inhibits adipocyte hypertrophy and visceral adipose tissue accumulation by activating PPARα actions in rat white adipose tissues. J Ethnopharmacol 127:47–54

    Article  PubMed  Google Scholar 

  • Soleimani N, Hoseinifar SH, Merrifield DL, Barati M, Abadi ZH (2012) Dietary supplementation of fructooligosaccharide (FOS) improves the innate immune response, stress resistance, digestive enzyme activities and growth performance of Caspian roach (Rutilus rutilus) fry. Fish Shellfish Immunol 32:316–321

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Wen H, Zeng L, Jiang M, Wu F, Liu W, Yang C (2013) Changes in the activities and mRNA expression levels of lipoprotein lipase (LPL), hormone-sensitive lipase (HSL) and fatty acid synthetase (FAS) of Nile tilapia (Oreochromis niloticus) during fasting and re-feeding. Aquaculture 400:29–35

    Article  Google Scholar 

  • Tsai M, Chen H, Tseng M, Chang R (2008) Cloning of peroxisome proliferators activated receptors in the cobia (Rachycentron canadum) and their expression at different life-cycle stages under cage aquaculture. Gene 425:69–78

    Article  CAS  PubMed  Google Scholar 

  • Vanden HJ (2011) Nutrigenomics and nutrigenetics of ω3 polyunsaturated fatty acids. Prog Mol Biol Transl Sci 108:75–112

    Article  Google Scholar 

  • Venkatachalam AB, Sawler DL, Wright JM (2013) Tissue-specific transcriptional modulation of fatty acid-binding protein genes, fabp2, fabp3 and fabp6, by fatty acids and the peroxisome proliferator, clofibrate, in zebrafish (Danio rerio). Gene 520:14–21

    Article  CAS  PubMed  Google Scholar 

  • Venold FF, Penn MH, Thorsen J, Gu J, Kortner TM, Krogdahl Å, Bakke AM (2013) Intestinal fatty acid binding protein (fabp2) in Atlantic salmon (Salmo salar): localization and alteration of expression during development of diet induced enteritis. Comp Biochem Physiol A Mol Integr Physiol 164:229–240

    Article  CAS  PubMed  Google Scholar 

  • Villalba M, Rathore MG, Lopez-Royuela N, Krzywinska E, Garaude J, Allende-Vega N (2013) From tumor cell metabolism to tumor immune escape. Int J Biochem Cell Biol 45:106–113

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Li F, Luan W, Xie Y, Zhang C, Luo Z, Gui L, Yan H, Xiang J (2008) Comparison of gene expression profiles of Fenneropenaeus chinensis challenged with WSSV and Vibrio. Mar Biotechnol 10:664–675

    Article  CAS  PubMed  Google Scholar 

  • Yeh S, Lin M, Chen H (2010) Partial hydrolysis enhances the inhibitory effects of konjac glucomannan from Amorphophallus konjac C. Koch on DNA damage induced by fecal water in Caco-2 cells. Food Chem 119:614–618

    Article  CAS  Google Scholar 

  • Zhang L, Wu Y, Wang L, Wang H (2013) Effects of oxidized Konjac glucomannan (OKGM) on growth and immune function of Schizothorax prenanti. Fish Shellfish Immunol 35:1105–1110

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wu Y, Xu H, Yao Y (2017) Effects of oxidized konjac glucomannan on the intestinal microbial flora and intestinal morphology of Schizothorax prenanti. Aquac Int 25:233–250

    Article  CAS  Google Scholar 

  • Zhao Z, Yin Z, Weng S, Guan H, Li S, Xing K, Chan S, He J (2007) Profiling of differentially expressed genes in hepatopancreas of white spot syndrome virus-resistant shrimp (Litopenaeus vannamei) by suppression subtractive hybridisation. Fish Shellfish Immunol 22:520–534

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Gul Y, Li S, Wang W (2011) Cloning, identification and accurate normalization expression analysis of PPARα gene by GeNorm in Megalobrama amblycephala. Fish Shellfish Immunol 31:462–468

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Luo Z, Liu C, Chen Q, Tan X, Zhu Q, Gong Y (2013) Differential effects of acute and chronic zinc (Zn) exposure on hepatic lipid deposition and metabolism in yellow catfish Pelteobagrus fulvidraco. Aquat Toxicol 132:173–181

    Article  PubMed  Google Scholar 

  • Zimmerman A, Veerkamp J (2002) New insights into the structure and function of fatty acid-binding proteins. Cellular and Molecular Life Sciences CMLS 59:1096–1116

    Article  CAS  PubMed  Google Scholar 

  • Ziouzenkova O, Perrey S, Marx N, Bacqueville D, Plutzky J (2002) Peroxisome proliferator-activated receptors. Curr Atheroscler Rep 4:59–64

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Sichuan Province Science and Technology support projects of China (2009NZ0077-007) and Higher Education Department of Henan Province key scientific research projects (15A240008). The authors thank Professors Qiongzhi Li and Anxiang Wen for their help in acquiring test instruments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liao Zhang or Yinglong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wu, Y., Si, P. et al. Effects on lipid metabolism and expression of PPARα and FABP of Schizothorax prenanti by oxidized Konjac glucomannan. Aquacult Int 25, 2007–2025 (2017). https://doi.org/10.1007/s10499-017-0168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-017-0168-4

Keywords

Navigation