Skip to main content
Log in

Improvement of nutritive value of sesame oilseed meal in formulated diets for rohu, Labeo rohita (Hamilton), fingerlings after fermentation with two phytase-producing bacterial strains isolated from fish gut

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Eight isonitrogenous (approximately 35 % crude protein) and isocaloric (17.58 kJ g−1) diets incorporating raw and fermented sesame oilseed meal replacing other feed ingredients including fishmeal at 10, 20, 30 and 40 % levels by weight into a fishmeal-based reference diet (RD) were fed to rohu, Labeo rohita, fingerlings (mean initial weight 3.19 ± 0.09 g) for 80 days. Two phytase-producing bacterial strains (LF1 and LH1 of Bacillus licheniformis) isolated from the foregut and hindgut regions of adult L. rohita were used for fermentation of oilseed meal for 15 days at 37 ± 2 °C. Fermentation of sesame seed meal was effective in significantly reducing the crude fibre content and anti-nutritional factors such as tannins and phytic acid and enhancing available free amino acids, free fatty acids and mineral concentration. In terms of growth, feed conversion ratio and protein efficiency ratio, 30 % fermented oilseed meal incorporated diet resulted in a significantly (P < 0.05) better performance of rohu fingerlings. In general, growth and feed utilization efficiencies of diets containing fermented oilseed meal were superior to diets containing raw meal. The apparent digestibility of protein, lipid, ash and minerals (phosphorus, calcium, manganese, copper and iron) was significantly (P < 0.05) higher in fish fed diet containing 30 % fermented oilseed meal in comparison with those fed RD. The maximum deposition of protein in the carcass was recorded in fish fed the diet containing 30 % fermented seed meal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afinah S, Yazid AM, Shobirin-Anis MH, Shuhaini M (2010) Phytase: application in food industry. Int Food Res J 17:13–21

    CAS  Google Scholar 

  • AOAC (Association of Official Analytical Chemists) (1990) Official methods of analysis of the association of official analytical chemists. In: Helrich W (Ed) vol 1, 15th ed. Association of Official Analytical Chemists, Washington, DC, p 1134

  • APHA (American Public Health Association) (1985) Standard Methods for the Examination of Water and Waste Water, 16th edn. American Water Works Association and Water Pollution. Control Fed, Washington, DC

    Google Scholar 

  • Bairagi A, Sarkar Ghosh K, Sen SK, Ray AK (2002) Duckweed (Lemna polyrhiza) leaf meal as a source of feedstuff in formulated diets for rohu (Labeo rohita Ham.) fingerlings after fermentation with a fish intestinal bacterium. Bioresour Technol 85:17–24

    CAS  PubMed  Google Scholar 

  • Bairagi A, Sarkar Ghosh K, Sen SK, Ray AK (2004) Evaluation of nutritive value of Leucaena leucocephala leaf meal inoculated with fish intestinal bacteria Bacillus subtilis and Bacillus circulans in formulated diets for rohu, Labeo rohita (Hamilton) fingerlings. Aquacult Res 35:436–446

    Google Scholar 

  • Baruah K, Sahu NP, Pal AK, Debnath D (2004) Dietary phytase: an ideal approach for a cost effective and low-polluting aquafeed. NAGA World Fish Cent Quart 27(3–4):15–19

    Google Scholar 

  • Baruah K, Pal AK, Sahu NP, Jain KK, Mukherjee SC, Debnath D (2005) Dietary protein level, microbial phytase, citric acid and their interactions on bone mineralization of Labeo rohita (Hamilton) juveniles. Aquacult Res 36:803–812

    CAS  Google Scholar 

  • Baruah K, Pal AK, Sahu NP, Debnath D (2007a) Microbial phytase supplementation in rohu, Labeo rohita, diets enhances growth performance and nutrient digestibility. J World Aquacult Soc 38(1):129–137

    Google Scholar 

  • Baruah K, Sahu NP, Pal AK, Jain KK, Debnath D, Mukherjee SC (2007b) Dietary microbial phytase and citric acid synergistically enhances nutrient digestibility and growth performance of Labeo rohita (Hamilton) juvenile at sub-optimal protein level. Aquacult Res 38:109–120

    CAS  Google Scholar 

  • Beutler AL (2009) The efficacy of quantum™ phytase in laying hens fed corn-soybean meal based diets. Dissertation, University of Saskatchewan

  • Bhavsar K, Shah P, Soni SK, Khire JM (2008) Influence of pretreatment of agriculture residues on phytase production by Aspergillus niger NCIM563 under submerged fermentation conditions. Afr J Biotech 7:1101–1106

    CAS  Google Scholar 

  • Bolin DW, King RP, Klosterman EW (1952) A simplified method for the determination of chromic oxide (Cr2O3) when used as an index substance. Science 116:634–635

    CAS  PubMed  Google Scholar 

  • Brown PB, Kaushik SJ, Peres H (2008) Protein feedstuffs originating from soybeans. In: Lim C, Webster CD, Lee C-S (eds) Alternatives protein sources in aquaculture diets. The Haworth Press, New York, pp 205–223

    Google Scholar 

  • Cain KD, Garling DL (1995) Pretreatment of soybean meal with phytase for salmonid diets to reduce phosphorus concentrations in hatchery effluents. Prog Fish Cult 57:114–119

    Google Scholar 

  • Caipang CMA, Dechavez RB, Apines-Amar MJS (2011) Potential application of microbial phytase in aquaculture. ELBA Bioflux 3(1):55–66

    Google Scholar 

  • Cao L, Wang W, Yang C, Yang Y, Diana J, Yakupitiyage A, Luo Z, Li D (2007) Application of microbial phytase in fish feed. Enz Microbl Technol 40:497–507

    CAS  Google Scholar 

  • Cao L, Yang Y, Wang WM, Yakupitiyage A, Yuan DR, Diana JS (2008) Effects of pretreatment with microbial phytase on phosphorus utilization and growth performance of Nile tilapia (Oreochromis niloticus). Aquacult Nutr 14:99–109

    CAS  Google Scholar 

  • Cheng ZJ, Hardy RW (2002) Apparent digestibility coefficients of nutrients and nutritional value of poultry by-product meals for rainbow trout Oncorhynchus mykiss measured in vivo using settlement. J World Aquacult Soc 33:458–465

    Google Scholar 

  • Cheng ZJ, Hardy RW (2003) Effects of extrusion and expelling processing, and microbial phytase supplementation on apparent digestibility coefficients of nutrients in full-fat soybeans for rainbow trout (Oncorhynchus mykiss). Aquaculture 218(1):501–514

    CAS  Google Scholar 

  • Cheryan M (1980) Phytic acid interactions in food systems. Crit Rev Food Sci Nutr 13:297–335

    CAS  PubMed  Google Scholar 

  • Debnath D, Pal AK, Sahu NP, Jain KK, Yengkokpam S, Mukherjee SC (2005a) Effect of dietary microbial phytase supplementation on growth and nutrient digestibility of Pangasius pangasius fingerlings. Aquacult Res 36:180–187

    CAS  Google Scholar 

  • Debnath D, Pal AK, Sahu NP, Jain KK, Yengkokpam S, Mukherjee SC (2005b) Mineral status of Pangasius pangasius (Hamilton) fingerlings in relation to supplemental phytase: absorption, whole body and bone mineral content. Aquacult Res 36:326–335

    CAS  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F-tests. Biometrics 11:1–42

    Google Scholar 

  • Dvořáková J (1998) Phytase: sources, preparation and exploitation. Folia Microbiol 43:323–338

    Google Scholar 

  • Erdman JW, Poneros-Schneier AG (1989) Phytic acid interactions with divalent cations in food and in the gastrointestinal tract. Adv Exp Med Biol 249:167–171

    Google Scholar 

  • Forster I, Higgs DA, Dosanjh BS, Rowshandeli M, Paar J (1999) Potential for dietary phytase to improve the nutritive value of canola protein concentrate and decrease phosphorus output in rainbow trout (Oncorhynchus mykiss) held at 11°C freshwater. Aquaculture 179:109–125

    CAS  Google Scholar 

  • Hardy RW (2010) Review article: utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquacult Res 41:770–776

    CAS  Google Scholar 

  • Hasan MR, Azad AZ, Omar Farooque AM, Akand A, Das PM (1991) Evaluation of some oilseed cakes as dietary protein sources for the fry of Indian major carp, Labeo rohita (Ham.). In: De Silva SS (ed) Fish nutrition research in Asia. Proceedings of the fourth Asian fish nutrition workshop, vol 5. Asian Fisheries Society Special Publication. Asian Fisheries Society, Manila, pp 107–117

  • Hassan S, Altaff K, Satyanarayana T (2009) Use of soybean meal supplemented with cell bound phytase for replacement of fish meal in the diet of juvenile milkfish, Chanos chanos. Pak J Nutr 8:341–344

    CAS  Google Scholar 

  • Hauler RC, Carter CG (1997) Phytase stimulates appetite in Atlantic salmon Salmo salar parr fed soybean meal. Proc Nutr Soc Aust 21:139–148

    Google Scholar 

  • Hemre GI, Amlund H, Aursand M, Bakke AM, Olsen RE, Ringø E, Svihus B (2009) Criteria for safe use of plant ingredients in diets for aquacultured fish: Opinion of the panel of animal feed of the Norwegian scientific committee for food safety, 05-02-2009. pp 1–173, Norwegian Scientific Committee for Food Safety (VKM), Oslo, Norway

  • Hesseltine CW (1987) Solid-state fermentation: an overview. Int Biodeterior 23:70–89

    Google Scholar 

  • Hossain MA, Jauncey K (1989) Nutritional evaluation of some Bangladeshi oilseed meals as partial substitutes for fish meal in the diet of common carp, Cyprinus carpio L. Aquacult Fish Manag 20:255–268

    Google Scholar 

  • Hossain MA, Jauncey K (1993) The effects of varying dietary phytic acid, calcium and magnesium levels on the nutrition of common carp, Cyprinus carpio. In: Fish nutrition in practice. IVth international symposium on fish nutrition and feeding, Biarritz, France, June 24–27, 1993, pp 705–715, INRA, Paris, France

  • Hughes KP, Soares JH (1998) Efficacy of phytase on phosphorus utilization in practical diets fed to striped bass, Morone saxatilis. Aquacult Nutr 4:133–140

    CAS  Google Scholar 

  • Jackson LS, Li MH, Robinson EH (1996) Use of microbial phytase in channel catfish Ictalurus punctatus diets to improve utilization of phytate phosphorus. J World Aquacult Soc 27:309–313

    Google Scholar 

  • Johnson LA, Suleiman TM, Lusas EW (1979) Sesame protein: a review and prospectus. J Am Oil Chem Soc 56:463–468

    CAS  PubMed  Google Scholar 

  • Jorquera M, Martínez O, Maruyama F, Marschiner P, Mora MDLL (2008) Current and future biotechnology applications of bacterial phytases and phytase-producing bacteria. Microbes Environ 23:182–191

    PubMed  Google Scholar 

  • Kim Y-O, Kim H-K, Bae K-S, Yu J-H, Oh T-K (1998) Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enz Microb Technol 22:2–7

    CAS  Google Scholar 

  • Konietzny U, Greiner R (2002) Molecular and catalytic properties of phytate degrading enzymes (phytases). Int J Food Sci Technol 37:791–812

    CAS  Google Scholar 

  • Konietzny U, Greiner R (2004) Bacterial phytase: potential application, in vivo function and regulation of its synthesis. Braz J Microbiol 35:12–18

    Google Scholar 

  • Krogdahl Å (1989) Alternative protein sources from plants containing anti-nutrients affecting digestion in Salmonids. In: Takeda M, Watanabe T (eds) Proceedings of the third international symposium in feeding and nutrition in fish. Tokyo University of Fisheries, Tokyo, pp 253–261

    Google Scholar 

  • Lall SP (1991) Concepts in the formulation and preparation of a complete fish diet. In: De Silva SS (ed) Fish nutrition research in Asia. Proceedings of the fourth Asian fish nutrition workshop, Asian Fish. Society special publication 5, 205 p. Asian Fisheries Society, Manila, pp 1–12

  • Li MH, Robinson EH (1997) Microbial phytase can replace inorganic phosphorus supplements in channel cat-fish, Ictalurus punctatus diets. J World Aquacult Soc 28:402–406

    Google Scholar 

  • Liebert F, Portz L (2005) Nutrient utilization of Nile tilapia Oreochromis niloticus fed plant based low phosphorus diets supplemented with graded levels of different sources of microbial phytase. Aquaculture 248:111–119

    CAS  Google Scholar 

  • Liu BL, Rafiq A, Tzen YM, Rob A (1998) The induction and characterization of phytase and beyond. Enz Microb Technol 22:415–424

    CAS  Google Scholar 

  • Lonsane BK, Ghildyal NP, Murthy VS (1982) Solid state fermentation processes and their challenges. In: Technical brochure. Symposium on Fermented foods, food contaminants, biofertilizers and bioenergy. Association of Microbiologists of India, Mysore, India

  • Luo Z, Tan XY, Liu X, Wang WM (2010) Dietary total phosphorus requirement of juvenile yellow catfish Pelteobagrus fulvidraco. Aquacult Int 18(5):897–908

    CAS  Google Scholar 

  • Masumoto T, Tamura B, Shimeno S (2001) Effects of phytase on bioavailability of phosphorus in soybean meal-based diets for Japanese flounder Paralichthys olivaceus. Fish Sci 67:1075–1080

    Google Scholar 

  • Mukhopadhyay N, Ray AK (1996) The potential of deoiled sal (Shorea robusta) seed meal as feedstuff in pelleted feed for Indian major carp, rohu, Labeo rohita (Hamilton), fingerlings. Aquacult Nutr 2:221–227

    Google Scholar 

  • Mukhopadhyay N, Ray AK (1997) The apparent total and nutrient digestibility of sal (Shorea robusta) seed meal in rohu, Labeo rohita (Hamilton), fingerlings. Aquacult Res 28:683–689

    Google Scholar 

  • Mukhopadhyay N, Ray AK (1999a) Utilization of copra meal in the formulation of compound diets for rohu, Labeo rohita fingerlings. J Appl Ichthyol 15:127–131

    CAS  Google Scholar 

  • Mukhopadhyay N, Ray AK (1999b) Effect of fermentation on the nutritive value of sesame seed meal in the diets for rohu, Labeo rohita (Hamilton), fingerlings. Aquacult Nutr 5:229–236

    Google Scholar 

  • Mukhopadhyay N, Ray AK (2005) Effect of fermentation on apparent total and nutrient digestibility of linseed, Linum usitatissimum, meal in rohu, Labeo rohita, fingerlings. Acta Ichthyol Piscat 35(2):73–78

    Google Scholar 

  • Nang Thu TT, Bodin N, Saeger SD, Larondelle Y, Rollin X (2011) Substitution of fish meal by sesame oil cake (Sesamum indicum L.) in the diet of rainbow trout (Oncorhynchus mykiss W.). Aquacult Nutr 17(1):80–89

    Google Scholar 

  • NRC (National Research Council) (1993) Nutrient requirements of fish. Committee on animal nutrition, Board on Agriculture. National Research Council, National Academy Press, Washington, DC, p 114

    Google Scholar 

  • Nwanna LC (2007) Effect of dietary phytase on growth, enzyme activities and phosphorus load of Nile tilapia (Oreochromis niloticus). J Eng Appl Sci 2(6):972–976

    CAS  Google Scholar 

  • Nwanna LC, Schwarz FJ (2007) Effect of supplemental phytase on growth, phosphorus digestibility and bone mineralization of common carp (Cyprinus carpio L.). Aquacult Res 38:1037–1044

    CAS  Google Scholar 

  • Nwanna LC, Kolahsa M, Eisenreich R, Schwarz FJ (2008) Pre-treatment of dietary plant feedstuffs with phytase and its effect on growth and mineral concentration in common carp (Cyprinus carpio L.). J Anim Physiol Anim Nutr 92(6):677–682

    CAS  Google Scholar 

  • Ogino C, Takeuchi T, Takeda H, Watauabe T (1979) Availability of dietary phosphorus in carp and rainbow trout. Bul Jap Soc Sci Fish 45:1527–1532

    CAS  Google Scholar 

  • Oliva-Teles A, Pereira JP, Gouveia A, Gomes E (1998) Utilization of diets supplemented with microbial phytase by seabass, Dicentrarchus labrax juveniles. Aqua Living Resour 11:255–259

    Google Scholar 

  • Oser BL (1960) (ed) Hawk’s physiological chemistry. Tata McGraw-Hill Publishing Co. Ltd., New Delhi, p 1472

  • Pandey A, Soccol CR, Rodriguez-Leon JA, Nigam P (2001) Production of organic acids by solid state fermentation. In: Pandey A (ed) Solid state fermentation in biotechnology: fundamentals and applications. Asiatech Publishers, New Delhi, p 127

    Google Scholar 

  • Papatryphon E, Soares JH (2001) The effect of phytase on apparent digestibility of four practical plant feedstuffs fed to striped bass, Morone saxatilis. Aquacult Nutr 7:161–167

    CAS  Google Scholar 

  • Raboy V (1997) Accumulation and storage of phosphate and minerals. In: Larkins BA, Vasil IK (eds) Cellular and molecular biology of plant seed development. Kluwer Academic Publishers, Dordrecht, pp 441–477

    Google Scholar 

  • Rajendran S, Prakash V (1993) Kinetics and thermodynamics of the mechanism of interaction of sodium phytate with α-globulin. Biochemistry 32:3474–3478

    CAS  PubMed  Google Scholar 

  • Rajmalwar S, Dabholkar PS (2009) Production of protease by Aspergillus sp. using solid-state fermentation. Afr J Biotechnol 8:4197–4198

    CAS  Google Scholar 

  • Ramachandran S, Ray AK (2004) Inclusion of extruded grass pea, Lathyrus sativus seed meal in compound diets for rohu, Labeo rohita (Hamilton, 1822) fingerlings. Acta Ichthyol Piscat 34(2):205–218

    Google Scholar 

  • Ramachandran S, Ray AK (2007) Nutritional evaluation of fermented black gram (Phaseolus mungo) seed meal in compound diets for rohu, Labeo rohita (Hamilton), fingerlings. J Appl Ichthyol 23:74–79

    CAS  Google Scholar 

  • Ramachandran S, Ray AK (2008) Effect of different processing techniques on the nutritive value of grass pea, Lathyrus sativus L., seed meal in compound diets for Indian major carp rohu, Labeo rohita (Hamilton), fingerlings. Arch Pol Fish 16(2):189–202

    Google Scholar 

  • Ramachandran S, Bairagi A, Ray AK (2005) Improvement of nutritive value of grass pea (Lathyrus sativus) seed meal in the formulated diets for rohu, Labeo rohita (Hamilton) fingerlings after fermentation with a fish gut bacterium. Bioresour Technol 96:1465–1472

    CAS  PubMed  Google Scholar 

  • Ray AK, Das I (1995) Evaluation of dried aquatic weed, Pistia stratiotes meal as feedstuff in pelleted feed for rohu, Labeo rohita fingerlings. J Appl Aquacult 5:35–44

    Google Scholar 

  • Reddy NR, Sathe SK, Salunkhe DK (1982) Phytates in legumes and cereals. In: Chichester CO, Mark EM, Stewart GF (eds) Advances in food research. Academic Press, New York, pp 1–92

    Google Scholar 

  • Reigh RC (2008) Underutilized and unconventional plant protein supplements. In: Lim C, Webster CD, Lee C-S (eds) Alternatives protein sources in aquaculture diets. The Haworth Press, New York, pp 433–474

    Google Scholar 

  • Riche M, Brown PB (1996) Availability of phosphorus from feedstuffs fed to rainbow trout, Oncorhynchus mykiss. Aquaculture 142(269):282

    Google Scholar 

  • Roy T, Mondal S, Ray AK (2009) Phytase-producing bacteria in the digestive tracts of some freshwater fish. Aquacult Res 40:344–353

    Google Scholar 

  • Sajjadi M, Carter CG (2004) Effect of phytic acid and phytase on feed intake, growth, digestibility and trypsin activity in Atlantic salmon (Salmo salar L.). Aquacult Nutr 10(2):135–142

    CAS  Google Scholar 

  • Sardar P, Randhawa HS, Abid M, Prabhakar SK (2007) Effect of dietary microbial phytase supplementation on growth performance, nutrient utilization, body compositions and haemato-biochemical profiles of Cyprinus carpio (L.) fingerlings fed soy protein-based diet. Aquacult Nutr 13:444–456

    CAS  Google Scholar 

  • Schäfer A, Koppe WM, Meyer-Burgdorff K-H, Günther KD (1995) Effects of a microbial phytase on the utilization of native phosphorus by carp in a diet based on soybean meal. Water Sci Technol 31:149–155

    Google Scholar 

  • Schanderi SH (1970) Method in food analysis. Academic Press, New York

    Google Scholar 

  • Selvakumar P, Pandey A (1999) Solid state fermentation for the synthesis of inulinase from Staphylococcus sp. and Kluyveromyces marxianus. Process Biochem 34:851–858

    CAS  Google Scholar 

  • Shieh TR, Ware JH (1968) Survey of microorganisms for the production of extracellular phytase. Appl Microbiol 16:1348–1351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simons PCM, Versteegh HAJ (1990) Phytase in feed reduces phosphorus excretion. Poult Misset June/July:15–17

  • Singh M, Krikorian AD (1982) Inhibition of trypsin activity in vitro by phytate. J Agri Food Chem 30:799–800

    CAS  Google Scholar 

  • Spinelli J, Houle CR, Wekell JC (1983) The effect of phytates on the growth of rainbow trout (Salmo gairdneri) fed purified diets containing varying quantities of calcium and magnesium. Aquaculture 30:71–83

    CAS  Google Scholar 

  • Spyridakis P, Metailler R, Gabaudan J, Riaza A (1989) Studies on nutrient digestibility in European sea bass (Dicentrarchus labrax). 1. Methodological aspects concerning faeces collection. Aquaculture 77:61–70

    Google Scholar 

  • Steffens W (1989) Principles of fish nutrition. Ellis Horwood, Chichester

    Google Scholar 

  • Sugiura SH, Dong FM, Hardy RW (1998) Effect of dietary supplements on the availability of minerals in fishmeal: preliminary observation. Aquaculture 160:283–303

    CAS  Google Scholar 

  • Sugiura SH, Gabaudan J, Dong FM, Hardy RW (2001) Dietary microbial phytase supplementation and the utilization of phosphorus, trace minerals and protein by rainbow trout Oncorhynchus mykiss (Walbaum) fed soybean meal-based diets. Aquacult Res 32:583–592

    CAS  Google Scholar 

  • Tacon AGJ (1997) Fish meal replacers: review of anti-nutrients within oilseeds and pulses—a limiting factor for the aquafeed green revolution. Cahiers Options Mediterr 22:153–182

    Google Scholar 

  • Tengerdy RP (1998) In: Pandey A (ed) Advances in biotechnology. Educational Publishers and Distributors, New Delhi, pp 13–16

    Google Scholar 

  • Ullah AHJ (1988a) Production, rapid purification and catalytic characterization of extracellular phytase from Aspergillus ficuum. Prep Biochem Biotechnol 18:443–458

    CAS  Google Scholar 

  • Ullah AHJ (1988b) Aspergillus ficuum phytase: partial primary structure, substrate selectivity, and kinetic characterization. Prep Biochem Biotechnol 18:459–471

    CAS  Google Scholar 

  • Ullah AHJ, Sethumadhavan K, Mullaney EJ, Ziegelhoffer T, Austin-Phillips S (1999) Characterization of recombinant fungal phytase (phy A) expressed in tobacco leaves. Biochem Biophys Res Comm 264:201–206

    CAS  PubMed  Google Scholar 

  • Usmani N, Jafri AK (2002) Influence of dietary phytic acid on the growth, conversion efficiency and carcass composition of mrigal, Cirrhinus mrigala (Hamilton) fry. J World Aquacult Soc 33:199–204

    Google Scholar 

  • Vats P, Bhushan B, Banerjee UC (2009) Studies on the dephosphorylation of phytic acid in livestock feed using phytase from Aspergillus niger van Teighem. Bioresour Technol 100:287–291

    CAS  PubMed  Google Scholar 

  • Vielma J, Lall SP, Koskela J (1998) Effects of dietary phytase and cholecalciferol on phosphorus bioavailability in rainbow trout (Oncorhynchus mykiss). Aquaculture 163(3):309–323

    CAS  Google Scholar 

  • Vielma J, Mäkinen T, Ekholm P, Koskela J (2000) Influence of dietary soy and phytase levels on performance and body composition of large rainbow trout, Oncorhynchus mykiss and algal availability of phosphorus load. Aquaculture 183:349–362

    CAS  Google Scholar 

  • Vielma J, Ruohonen K, Peisker M (2002) Dephytinization of two soy proteins increases phosphorus and protein utilization by rainbow trout, Oncorhynchus mykiss. Aquaculture 204:145–156

    CAS  Google Scholar 

  • Vielma J, Ruohonen K, Gabaudan J, Vogel K (2004) Top-spraying soybean meal based diets with phytase improves protein and mineral digestibility but not lysine utilization in rainbow trout, Oncorhynchus mykiss (Walbaum). Aquacult Res 35(10):955–964

    CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2003) Phytases: microbial sources, production, and potential biotechnological applications. Critical Rev Biotechnol 23:29–60

    CAS  Google Scholar 

  • Vohra P, Kratzer FH, Joslyn MA (1996) The growth depressing and toxic effects of tannins to chicks. Poultry Sci 46:135–142

    Google Scholar 

  • Volfová O, Dvořáková J, Hanzliková A, Jandera A (1994) Phytase from Aspergillus niger. Folia Microbiol 39:481–484

    Google Scholar 

  • Vucenik I, Shamsuddin AM (2003) Cancer inhibition by inositol hexaphosphate (IP6) and inositol: from laboratory to clinic. J Nutr 133:3778S–3784S

    CAS  PubMed  Google Scholar 

  • Wang HL, Swain EW, Hesseltine CW (1980) Phytase of molds used in oriental food fermentation. J Food Sci 45:1262–1266

    CAS  Google Scholar 

  • Warden WK, Schaible PJ (1962) Preliminary investigations concerning utilization of phytin phosphorus by the chick. Poultry Sci 41:1692

    Google Scholar 

  • Wee KL (1991) Use of non-conventional feedstuff of plant origin as fish feeds—is it practical and economically feasible? In: De Silva SS (ed) Fish nutrition research in Asia. Proceedings of the fourth Asian fish nutrition workshop, Asian fish. Society Special Publication, 5, 205 p. Asian Fisheries Society, Manila, pp 13–32

  • Wheeler EL, Ferrel RE (1971) A Method for phytic acid determination in wheat and wheat fractions. Cereal Chem 48:312–320

    CAS  Google Scholar 

  • Wodzinski RJ, Ullah AHJ (1996) Phytase. Adv Appl Microbiol 42:263–302

    CAS  PubMed  Google Scholar 

  • Yan W, Reigh RC (2002) Effects of fungal phytase on utilization of dietary protein and minerals, and dephosphorylation of phytic acid in the alimentary tractof channel catfish Ictalurus punctatus fed an all-plant protein diet. J World Aquacult Soc 33(1):10–22

    Google Scholar 

  • Yoo GY, Wang XJ, Choi SM, Han KM (2005) Dietary microbial phytase increased the phosphorus digestibility in juvenile Korean rockfish Sebastes schlegeli fed diets containing soybean meal. Aquaculture 243:315–322

    CAS  Google Scholar 

  • Zambare V (2010) Solid state fermentation of Aspergillus oryzae for glucoamylase production on agro residues. Int J Life Sci 4:16–25

    Google Scholar 

  • Zongjia J, Cheng ZJ, Hardy RW (2003) Effects of extrusion and expelling processing, and microbial phytase supplementation on apparent digestibility coefficients of nutrients in full-fat soybeans for rainbow trout, Oncorhynchus mykiss. Aquaculture 218:501–514

    Google Scholar 

Download references

Acknowledgments

We are grateful to the Indian Council of Agricultural Research, New Delhi [Project No. F.4 (26)/2004-ASR-I] for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, T., Banerjee, G., Dan, S.K. et al. Improvement of nutritive value of sesame oilseed meal in formulated diets for rohu, Labeo rohita (Hamilton), fingerlings after fermentation with two phytase-producing bacterial strains isolated from fish gut. Aquacult Int 22, 633–652 (2014). https://doi.org/10.1007/s10499-013-9691-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-013-9691-0

Keywords

Navigation