Skip to main content
Log in

Sampling and Characterizing Rare Earth Elements in Groundwater in Deep-Lying Fractures in Granitoids Under In Situ High-Pressure and Low-Redox Conditions

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Several countries are preparing to dispose of radioactive nuclear waste deep underground in crystalline rock. This type of bedrock is commonly extensively fractured and consequently carries groundwater that serves as a medium for transporting metals and radionuclides. A group of metals of particular interest in this context is the rare earth elements (REEs), because they are analogues of actinides contained within radioactive waste and are tracers of hydrological pathways and geochemical processes. Concentrations of REEs are commonly low in these groundwaters, leading to values below detection limits of standard monitoring methods, particularly for the heavy REEs. We present a new technical set-up for monitoring REEs (and other trace metals) in groundwater in fractured crystalline rock. The technique consists of passing the fracture groundwater, commonly under high pressure and containing reduced chemical species, through a device that maintains the physicochemical character of the groundwater. Within the device, diffusive gradient in thin-film (DGT) discs are installed in triplicate. With this set-up, we studied REEs in groundwater in fractures at depths of approximately −144, −280, and −450 m in granitoids in the Äspö Hard Rock Laboratory in southern Sweden. The entire REE suite was detected (concentrations down to 0.1 ng L−1) and was differently fractionated among the groundwaters. The shallowest groundwater, composed of dilute modern Baltic Sea water, was enriched in the heavy REEs, whereas the deeper groundwaters, dominated by old saline water, were depleted in the heavy REEs. Deployment periods varying from 1 to 4 weeks delivered similar REE concentrations, indicating stability and reproducibility of the experimental set-up. The study finds that 1 week of deployment may be enough. However, if the overall setting and construction allow for longer deployment times, 2–3 weeks will be optimal in terms of reaching reliable REE concentrations well above the detection limit while maintaining the performance of the DGT samplers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abelin H, Birgersson L, Moreno L, Widen H, Agren T, Neretnieks I (1991) A large-scale flow and tracer experiment in granite. 2. Results and interpretation. Water Resour Res 27:3119–3135

    Article  Google Scholar 

  • Abelin H, Birgersson L, Widén H, Ågren T, Moreno L, Neretnieks I (1994) Channeling experiments in crystalline fractured rocks. J Contam Hydrol 15:129–158. doi:10.1016/0169-7722(94)90022-1

    Article  Google Scholar 

  • Andersson P, Byegård J, Tullborg E-L, Doe T, Hermanson J, Winberg A (2004) In situ tracer tests to determine retention properties of a block scale fracture network in granitic rock at the Äspö Hard Rock Laboratory, Sweden. J Contam Hydrol 70:271–297. doi:10.1016/j.jconhyd.2003.09.009

    Article  Google Scholar 

  • Andersson K, Dahlqvist R, Turner D, Stolpe B, Larsson T, Ingri J, Andersson P (2006) Colloidal rare earth elements in a boreal river: changing sources and distributions during the spring flood. Geochim Cosmochim Acta 70:3261–3274. doi:10.1016/j.gca.2006.04.021

    Article  Google Scholar 

  • Andersson J, Skagius K, Winberg A, Lindborg T, Ström A (2013) Site-descriptive modelling for a final repository for spent nuclear fuel in Sweden. Environ Earth Sci 69:1045–1060

    Article  Google Scholar 

  • Birgersson L, Moreno L, Neretnieks I, Widen H, Agren T (1993) A tracer migration experiment in a small fracture-zone in granite. Water Resour Res 29:3867–3878

    Article  Google Scholar 

  • Brookins DG (1986) Natural analogues for radwaste disposal: elemental migration in igneous contact zones. Chem Geol 55:337–344. doi:10.1016/0009-2541(86)90034-3

    Article  Google Scholar 

  • Choppin GR (1983) Comparison of the solution chemistry of the actinides and lanthanides. J Less Common Met 93:323–330. doi:10.1016/0022-5088(83)90177-7

    Article  Google Scholar 

  • Coppin F, Berger G, Bauer A, Castet S, Loubet M (2002) Sorption of lanthanides on smectite and kaolinite. Chem Geol 182:57–68. doi:10.1016/S0009-2541(01)00283-2

    Article  Google Scholar 

  • Dahlqvist R, Andersson K, Ingri J, Larsson T, Stolpe B, Turner D (2007) Temporal variations of colloidal carrier phases and associated trace elements in a boreal river. Geochim Cosmochim Acta 71:5339–5354. doi:10.1016/j.gca.2007.09.016

    Article  Google Scholar 

  • Davison W, Zhang H (1994) In-situ speciation measurements of trace components in natural waters using thin-film gels. Nature 367:546–548

    Article  Google Scholar 

  • Davison W, Zhang H (2012) Progress in understanding the use of diffusive gradients in thin films (DGT)—back to basics. Environ Chem 9:1–13

    Article  Google Scholar 

  • Denney S, Sherwood J, Leyden J (1999) In situ measurements of labile Cu, Cd and Mn in river waters using DGT. Sci Total Environ 239:71–80. doi:10.1016/S0048-9697(99)00304-6

    Article  Google Scholar 

  • Drake H, Tullborg E-L, Hogmalm KJ, Åström ME (2012) Trace metal distribution and isotope variations in low-temperature calcite and groundwater in granitoid fractures down to 1 km depth. Geochim Cosmochim Acta 84:217–238. doi:10.1016/j.gca.2012.01.039

    Article  Google Scholar 

  • Elderfield H, Upstill-Goddard R, Sholkovitz ER (1990) The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochim Cosmochim Acta 54:971–991. doi:10.1016/0016-7037(90)90432-K

    Article  Google Scholar 

  • Gammons CH, Wood SA, Nimick DA (2005) Diel behavior of rare earth elements in a mountain stream with acidic to neutral pH. Geochim Cosmochim Acta 69:3747–3758

    Article  Google Scholar 

  • Garmo OA, Royset O, Steinnes E, Flaten TP (2003) Performance study of diffusive gradients in thin films for 55 elements. Anal Chem 75:3573–3580

    Article  Google Scholar 

  • Garmo ØA, Lehto NJ, Zhang H, Davison W, Røyset O, Steinnes E (2006) Dynamic aspects of DGT as demonstrated by experiments with lanthanide complexes of a multidentate ligand. Environ Sci Technol 40:4754–4760

    Article  Google Scholar 

  • Gimpel J, Zhang H, Hutchinson W, Davison W (2001) Effect of solution composition, flow and deployment time on the measurement of trace metals by the diffusive gradient in thin films technique. Anal Chim Acta 448:93–103

    Article  Google Scholar 

  • Gromet LP, Haskin LA, Korotev RL, Dymek RF (1984) The “North American shale composite”: its compilation, major and trace element characteristics. Geochim Cosmochim Acta 48:2469–2482. doi:10.1016/0016-7037(84)90298-9

    Article  Google Scholar 

  • Haskin LA, Haskin MA, Frey FA, Wildeman TR (1968) Relative and absolute terrestrial abundances of the rare earths. In: Ahrens LH (ed) Origin and distribution of the elements. Pargamon, Oxford, pp 889–912

    Chapter  Google Scholar 

  • Johannesson KH, Stetzenbach KJ, Hodge VF (1997) Rare earth elements as geochemical tracers of regional groundwater mixing. Geochim Cosmochim Acta 61:3605–3618. doi:10.1016/S0016-7037(97)00177-4

    Article  Google Scholar 

  • Kienzler B, Vejmelka P, Römer J, Fanghänel E, Jansson M, Eriksen TE, Wikberg P (2003) Swedish-German actinide migration experiment at ÄSPÖ Hard Rock Laboratory. J Contam Hydrol 61:219–233. doi:10.1016/S0169-7722(02)00133-X

    Article  Google Scholar 

  • Laaksoharju M, Wold S (2005) The colloid investigations conducted at the Äspö Hard Rock Laboratory during 2000–2004. Technical Report no. TR-05-20. Swedish Nuclear Fuel and Waste Management Co., Stockholm

  • Laaksoharju M, Gascoyne M, Gurban I (2008a) Understanding groundwater chemistry using mixing models. Appl Geochem 23:1921–1940. doi:10.1016/j.apgeochem.2008.02.018

    Article  Google Scholar 

  • Laaksoharju M, Smellie J, Tullborg E-L, Gimeno M, Molinero J, Gurban I, Hallbeck L (2008b) Hydrogeochemical evaluation and modelling performed within the Swedish site investigation programme. Appl Geochem 23:1761–1795. doi:10.1016/j.apgeochem.2008.02.015

    Article  Google Scholar 

  • Louvat D, Michelot JL, Aranyossy JF (1999) Origin and residence time of salinity in the Äspö groundwater system. Appl Geochem 14:917–925. doi:10.1016/S0883-2927(99)00026-8

    Article  Google Scholar 

  • Mathurin FA, Åström ME, Laaksoharju M, Kalinowski BE, Tullborg E-L (2012) Effect of tunnel excavation on source and mixing of groundwater in a coastal granitoidic fracture network. Environ Sci Technol 46:12779–12786

    Article  Google Scholar 

  • McCombie C, Chapman N (2003) Principles and standards for the disposal of long-lived radioactive wastes: waste management series, vol 3. Pergamon, Oxford

    Google Scholar 

  • Montero N, Belzunce-Segarra MJ, Gonzalez JL, Larreta J, Franco J (2012) Evaluation of diffusive gradients in thin-films (DGTs) as a monitoring tool for the assessment of the chemical status of transitional waters within the Water Framework Directive. Mar Pollut Bull 64:31–39. doi:10.1016/j.marpolbul.2011.10.028

    Article  Google Scholar 

  • Olofsson RS, Rodushkin I, Axelsson MD (2000) Performance characteristics of a tandem spray chamber arrangement in double focusing sector field ICP-MS. J Anal At Spectrom 15:727–729

    Article  Google Scholar 

  • Pichette C, Zhang H, Sauvé S (2009) Using diffusive gradients in thin-films for in situ monitoring of dissolved phosphate emissions from freshwater aquaculture. Aquaculture 286:198–202. doi:10.1016/j.aquaculture.2008.09.025

    Article  Google Scholar 

  • Posiva (2010) Nuclear waste management at Olkiluoto and Loviisa power plants. Review of current status and future plans for 2010–2012. Programme Report no. TKS-2009. Posiva Oy, Olkiluoto, Finland. http://www.posiva.fi/en/databank/posiva_reports

  • Regander C, Bergman B (2010) Oskarshamn site investigation: Hydrogeochemical monitoring programme for core and percussion drilled boreholes 2009. Summary of ground water chemistry results from spring and autumn sampling. Report no. P-10-37. Swedish Nuclear Fuel and Waste Management Co., Stockholm

  • Rodushkin I, Nordlund P, Engstrom E, Baxter DC (2005) Improved multi-elemental analyses by inductively coupled plasma-sector field mass spectrometry through methane addition to the plasma. J Anal At Spectrom 20:1250–1255

    Article  Google Scholar 

  • Rönnback P, Åström M, Gustafsson J-P (2008) Comparison of the behaviour of rare earth elements in surface waters, overburden groundwaters and bedrock groundwaters in two granitoidic settings, Eastern Sweden. Appl Geochem 23:1862–1880. doi:10.1016/j.apgeochem.2008.02.008

    Article  Google Scholar 

  • Sholkovitz ER (1995) The aquatic chemistry of rare earth elements in rivers and estuaries. Aquat Geochem 1:1–34

    Article  Google Scholar 

  • SKB (2006) Long-term safety for KBS-3 repositories at Forsmark and Laxemar: a first evaluation. Main report of the SR-Can project. Technical Report no. TR-06-09. Swedish Nuclear Fuel and Waste Management Co., Stockholm. www.skb.se/Templates/Standard_17139.aspx

  • SKB (2010) RD&D Programme 2010. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste. Technical Report no. TR-10-63. Swedish Nuclear Fuel and Waste management Co., Stockholm. www.skb.se/Templates/Standard_17139.aspx

  • Smellie JAT, Laaksoharju M, Wikberg P (1995) Äspö, SE Sweden: a natural groundwater flow model derived from hydrogeochemical observations. J Hydrol 172:147–169. doi:10.1016/0022-1694(95)02720-A

    Article  Google Scholar 

  • Ström A, Andersson J, Skagius K, Winberg A (2008) Site descriptive modelling during characterization for a geological repository for nuclear waste in Sweden. Appl Geochem 23:1747–1760. doi:10.1016/j.apgeochem.2008.02.014

    Article  Google Scholar 

  • Tang J, Johannesson KH (2003) Speciation of rare earth elements in natural terrestrial waters: assessing the role of dissolved organic matter from the modeling approach. Geochim Cosmochim Acta 67:2321–2339. doi:10.1016/S0016-7037(02)01413-8

    Article  Google Scholar 

  • To TB, Nordstrom DK, Cunningham KM, Ball JW, McCleskey RB (1999) New method for the direct determination of dissolved Fe(III) concentration in acid mine waters. Environ Sci Technol 33:807–813. doi:10.1021/es980684z

    Article  Google Scholar 

  • Uher E, Zhang H, Santos S, Tusseau-Vuillemin M-H, Gourlay-Francé C (2012) Impact of biofouling on diffusive gradient in thin film measurements in water. Anal Chem 84:3111–3118

    Article  Google Scholar 

  • Warnken KW, Lawlor AJ, Lofts S, Tipping E, Davison W, Zhang H (2009) In situ speciation measurements of trace metals in headwater streams. Environ Sci Technol 43:7230–7236

    Article  Google Scholar 

  • Wood SA (1993) The aqueous geochemistry of the rare-earth elements: critical stability constants for complexes with simple carboxylic acids at 25 °C and 1 bar and their application to nuclear waste management. Eng Geol 34:229–259. doi:10.1016/0013-7952(93)90092-Q

    Article  Google Scholar 

  • Zhang H, Davison W (1995) Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Anal Chem 67:3391–3400

    Article  Google Scholar 

  • Zhong S, Mucci A (1995) Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25 °C and 1 atm, and high dissolved REE concentrations. Geochim Cosmochim Acta 59:443–453. doi:10.1016/0016-7037(94)00381-U

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda J. Alakangas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alakangas, L.J., Mathurin, F.A., Faarinen, M. et al. Sampling and Characterizing Rare Earth Elements in Groundwater in Deep-Lying Fractures in Granitoids Under In Situ High-Pressure and Low-Redox Conditions. Aquat Geochem 20, 405–418 (2014). https://doi.org/10.1007/s10498-014-9225-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-014-9225-z

Keywords

Navigation