Skip to main content

Advertisement

Log in

Spatial and Temporal Variability of Sediment Organic Matter Recycling in Two Temperate Eutrophicated Estuaries

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

This paper deals with the spatial and seasonal recycling of organic matter in sediments of two temperate small estuaries (Elorn and Aulne, France). The spatio-temporal distribution of oxygen, nutrient and metal concentrations as well as the organic carbon and nitrogen contents in surficial sediments were determined and diffusive oxygen fluxes were calculated. In order to assess the source of organic carbon (OC) in the two estuaries, the isotopic composition of carbon (δ 13C) was also measured. The temporal variation of organic matter recycling was studied during four seasons in order to understand the driving forces of sediment mineralization and storage in these temperate estuaries. Low spatial variability of vertical profiles of oxygen, nutrient, and metal concentrations and diffusive oxygen fluxes were monitored at the station scale (within meters of the exact location) and cross-section scale. We observed diffusive oxygen fluxes around 15 mmol m−2 day−1 in the Elorn estuary and 10 mmol m−2 day−1 in the Aulne estuary. The outer (marine) stations of the two estuaries displayed similar diffusive O2 fluxes. Suboxic and anoxic mineralization was large in the sediments from the two estuaries as shown by the rapid removal of very high bottom water concentrations of NO x (>200 μM) and the large NH4 + increase at depth at all stations. OC contents and C/N ratios were high in upstream sediments (11–15 % d.w. and 4–6, respectively) and decreased downstream to values around 2 % d.w. and C/N ≤ 10. δ 13C values show that the organic matter has different origins in the two watersheds as exemplified by lower δ 13C values in the Aulne watershed. A high increase of δ 13C and C/N values was visible in the two estuaries from upstream to downstream indicating a progressive mixing of terrestrial with marine organic matter. The Elorn estuary is influenced by human activities in its watershed (urban area, animal farming) which suggest the input of labile organic matter, whereas the Aulne estuary displays larger river primary production which can be either mineralized in the water column or transferred to the lower estuary, thus leaving a lower mineralization in Aulne than Elorn estuary. This study highlights that (1) meter scale heterogeneity of benthic biogeochemical properties can be low in small and linear macrotidal estuaries, (2) two estuaries that are geographically close can show different pattern of organic matter origin and recycling related to human activities on watersheds, (3) small estuaries can have an important role in recycling and retention of organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aminot A, Kerouel R, Coverly SC (2009) Nutrients in seawater using segmented flow analysis. CRC Press, Boca Raton, pp 143–178

    Google Scholar 

  • Andrieux-Loyer F, Philippon X, Bally G, K′erouel R, Youenou A, Le Grand J (2008) Phosphorus dynamics and bioavailability in sediments of the Penz′e Estuary (NW France): in relation to annual p-fluxes and occurrences of Alexandrium minutum. Biogeochemistry 88(3):213–231

    Article  Google Scholar 

  • Barth JAC, Veizer J, Mayer B (1998) Origin of particulate organic carbon in the upper St. Lawrence: isotopic constraints. Earth Planet Sci Lett 162:111–121

    Article  Google Scholar 

  • Berg P, Risgaard-Petersen N, Rysgaard S (1998) Interpretation of measured concentration profiles in sediment pore water. Limnol Oceanogr 43:1500–1510

    Article  Google Scholar 

  • Berg P, Rysgaard S, Thamdrup B (2003) Dynamic modeling of early diagenesis and nutrient cycling. A case study in an Arctic marine sediment. Am J Sci 303:905–955

    Article  Google Scholar 

  • Bopp RF, Simpson HJ, Olsen CR, Trier RM, Kostyc N (1982) Chlorinated hydrocarbons and radionuclides chronologies in sediments of the Hudson river and estuary, New York. Environ Sci Technol 16:666–676

    Article  Google Scholar 

  • Borges AV (2005). Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28(1):3–27

    Google Scholar 

  • Borsuk ME, Higdon D, Stow CA,  Reckhow KH (2001) A Bayesian hierarchical model to predict benthic oxygen demand from organic matter loading in estuaries and coastal zones. Ecol Model 143:165–181

    Google Scholar 

  • Broecker WS, Peng TH (1974) Gas exchange rates between air and sea. Lamont-Doherty Geological, pp 21–35

  • Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ 5(2):89–96

    Article  Google Scholar 

  • Cai WJ, Reimers CE (1995) Benthic oxygen flux, bottom water oxygen concentration and core top organic carbon content in the deep northeast Pacific ocean. Deep-Sea Res 42:1681–1699

    Article  Google Scholar 

  • Canavan RW, Slomp CP, Jourabchi P, Van Cappellen P, Laverman AM, Van den Berg GA (2006) Organic matter mineralization in sediment of a coastal freshwater lake and response to salinization. Geochim Cosmochim Acta 70:2836–2855

    Article  Google Scholar 

  • Canfield DE, Jorgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall POJ (1993) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113(1–2):27–40

    Article  Google Scholar 

  • Cathalot C, Rabouille C, Pastor L, Deflandre B, Viollier E, Buscail R, Grémare A, Treignier C, Pruski A (2010) Temporal variability of carbonrecycling in coastalsedimentsinfluenced by rivers: assessing the impact of flood inputs in the Rhône River prodelta. Biogeosciences 7:1187–1205

    Article  Google Scholar 

  • Cathalot C, Lansard B, Hall Per OJ, Tengberg A, Almroth-Rosell E, Apler A, Calder L, Bell E, Rabouille C (2012) Loch impacted by fish farming: a combination of in situ techniques. Aquat. Geochem. doi:10.1007/s10498-012-9181-4

    Google Scholar 

  • Cifuentes LA, Sharp JH, Fogel ML (1988) Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary. Limnol Oceanogr 33:1102–1115

    Article  Google Scholar 

  • Cloern JE (1996) Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California. Rev Geophys 34:127–168. doi:110.1029/1096RG00986

    Article  Google Scholar 

  • Cloern JE, Jassby AD (2012) Drivers of change in estuarine-coastal ecosystems: discoveries from four decades of study in San Francisco Bay. Rev Geophys 50(4). doi:10.1029/2012RG000397

  • Dedieu K, Rabouille C, Gilbert F, Soetaert K, Metzger E, Simonucci C, Jézequel D, Prévot F, Anschutz P, Hulth S, Ogier S, Mesnage V (2007) Coupling of carbon, nitrogen and oxygen cycles in sediments from a Mediterranean lagoon: a seasonal perspective. Mar Ecol Prog Ser 346:45–59

    Google Scholar 

  • Deflandre B, Mucci A, Gagné JP, Guignard C, Sundby B (2002) Early diagenetic processes in coastal marine sediments disturbed by a catastrophic sedimentation event. Geochim Cosmochim Acta 66:2547–2558

    Article  Google Scholar 

  • Del Amo Y (1996) Dynamique des structure des communautés phytoplanctoniques en écosystèmes côtiers perturbé; cinétique de l’incorporation du silicium par les diatomées. Université de Bretagne Occidentale, Brest, Thèse de Doctorat

    Google Scholar 

  • Elbaz-Poulichet F, Seidel JL, Jézéquel D, Metzger E, Prévot F, Simonucci C, Sarazin G, Viollier E, Etcheber H, Jouanneau JM, Weber O, Radakovitch O (2005) Sedimentary record of redox-sensitive elements (U, Mn, Mo) in a transitory anoxic basin (the Thau lagoon, France), In this paper, ZnCl2 is used to fix H2S. Mar Chem 95:271–281

    Article  Google Scholar 

  • Fraisse S, Bormans M, Lagadeuc Y (2013) Morphofunctional traits reflect differences in phytoplankton community between rivers of contrasting flow regime. Aquat Ecol 47:315–327

    Google Scholar 

  • Gauthier C, Hatté C (2007) Suitability and reliability of isotopic biogeochemistry studies in paleoclimatology: focus on protocols. In: Geophysical Research Abstracts EGU 2007 02912

  • Gehlen M, Rabouille C, Guidi-Guilvard LD, Ezat U (1997) Drastic changes in deep-sea sediment porewater composition induced by episodic input of organic matter. Limnol Oceanogr 42:980–986

    Article  Google Scholar 

  • Glud RN (2008) Oxygen dynamics of marine sediments. Mar Biol Res 4(4):243–289

    Article  Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis, second, revised and extended edition. Verlag Chemie, Weinheim 420 pp

    Google Scholar 

  • Grenz C, Cloern JE, Hager SW, Cole BE (2000) Dynamics of nutrient cycling and related benthic nutrient and oxygen fluxes during a spring phytoplankton bloom in South San Francisco Bay (USA). Mar Ecol Prog Ser 197:67–80

    Article  Google Scholar 

  • Hall PDJ, Anderson LG, Rutger van der Loeff MM, Snudby B, Vesterlund SFG (1989) Oxygen uptake kinetics in the benthic boundary layer. Limnol Oceanogr 34:734–746

    Article  Google Scholar 

  • Hammond DE, Fuller C, Harmon D, Hartman B, Korosec M, Miller LG, Rea R, Warren S, Berelson W, Hager SW (1985) Benthic fluxes in San Francisco Bay. Hydrobiologia 129(1):69–90

    Article  Google Scholar 

  • Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Org Geochem 27:195–212

    Article  Google Scholar 

  • Hellings L, Dehairs F, Tackx M, Keppens E, Baeyens W (1999) Origin and fate of organic carbon in the freshwater part of the Scheldt Estuary as traced by the stable carbon isotope composition. Biogeochemistry 47:167–186

    Google Scholar 

  • Huettel M, Røy H, Precht E, Ehrenhauss S (2003) Hydrodynamical impact on biogeochemical processes in aquatic sediments. Hydrobiologia 494:231–236

    Article  Google Scholar 

  • Karyne MR (2003) Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand. Mar Pollut Bull 46:821–827

    Article  Google Scholar 

  • Lansard B, Rabouille C, Denis L, Grenz C (2009) Benthic remineralization at the land-ocean interface: a case study of the Rhone River (NW Mediterranean Sea). Estuar Coast Shelf Sci 81(4):544–554

    Article  Google Scholar 

  • Laruelle GG et al (2009) Anthropogenic perturbations of the silicon cycle at the global scale: the 1 key role of the land-ocean transition. Global Biogeochem. Cy 23, GB4031, p 17. doi:10.1029/2008GB003267

  • Le Pape O, Del Amo Y, Menesguen A, Arninot A, Quegulner B, Treguer P (1996) Resistance of a coastal ecosystem to Increasing eutrophlc conditions: the Bay of Brest (France), a semi-enclosed zone of western Europe. Cont Shelf Res 16(15):1885–1907

    Article  Google Scholar 

  • Marchais V, Schaal G, Grall J, Lorrain A, Nerot C, Richard P, Chauvaud L (2013) Spatial variability of stable isotope ratios in oysters (Crassostrea gigas) and primary producers along an estuarine gradient (Bay of Brest, France) Est. Coast. doi:10.1007/s12237-012-9584-x

    Google Scholar 

  • Meiggs D, Taillefert M (2011) The effect of riverine discharge on biogeochemical processes in estuarine sediments. Limnol Oceanogr 56:1797–1810

    Article  Google Scholar 

  • Middelburg JJ, Klaver G, Nieuwenhuize J, Vlug T (1995) Carbon and nitrogen cycling in intertidal sediments near Doel, Scheldt estuary. Hydrobiologia 311:57–69

    Article  Google Scholar 

  • Mouret A, Anschutz P, Lecroart P, Chaillou G, Hyacinthe C, Deborde J, Jorissen FJ, Deflandre B, Schmidt S, Jouanneau JM (2009) Benthic geochemistry of manganese in the Bay of Biscay, and sediment mass accumulation rate. Geo-Mar Lett 29:133–149

    Article  Google Scholar 

  • Mügler C, Rabouille C, Bombled B, Montarnal P (2012) Impact of spatial heterogeneities on oxygen consumption in sediments: experimental observations and 2D numericalmodeling. J Geochem Explor 112:76–83

    Article  Google Scholar 

  • Nixon SW et al (1996) The fate of nitrogen and phosphorus at the land–sea margin of the North Atlantic Ocean. Biogeochemistry 35:141–180

    Article  Google Scholar 

  • Pastor L, Cathalot C, Deflandre B, Viollier E, Soetaert K, Meysman FJR, Ulses C, Metzger E, Rabouille C (2011a) Modeling biogeochemical processes in sediments from the Rhône River prodelta area (NW MediterraneanSea). Biogeosciences 8:1351–1366

    Article  Google Scholar 

  • Pastor L et al (2011b) Influence of the organic matter composition on benthic oxygen demand in the Rhône River prodelta (NW MediterraneanSea). Cont Shelf Res 31(9):1008–1019

    Article  Google Scholar 

  • Rabouille C, Gaillard JF (1994) Simulation of the sediment behavior during a benthic chamber deployment on the deep-sea floor. Oceanologia Acta 17:405–416

    Google Scholar 

  • Rabouille C, Mackenzie F, Ver LM (2001) Influence of the human perturbation on carbon, nitrogen and oxygen biogeochemical cycles in the global coastal ocean. Geochim Cosmochim Acta 65:3615–3639

    Article  Google Scholar 

  • Rabouille C, Denis L, Dedieu K, Stora G, Lansard B, Grenz C (2003) Oxygen demand in coastal marine sediments: comparing in situ microelectrodes and laboratory core incubations. J Exp Mar Biol Ecol 285–286:49–69

    Article  Google Scholar 

  • Ragueneau O, Chauvaud L, Leynaert A, Thouzeau G, Paulet YM, Bonnet S, Lorrain A, Corvaisier R, Le Hir M, Jean F, Clavier J (2002) Direct evidence of a biologically active coastal silicate pump: ecological implications. Limnol Oceanogr 47:1849–1854

    Article  Google Scholar 

  • Raimonet M (2011) Cycle benthique du silicium dans les estuaires: observations et modélisation à différentes échelles spatio-temporelles. Ph D thesis, Université de Bretagne Occidentale, Brest, pp 179

  • Raimonet M, Andrieux-Loyer F, Ragueneau O, Michaud E, Kerouel R, Philippon X, Nonent M, Mémery L (2013) Strong gradient of benthic biogeochemical processes along a macrotidal temperate estuary: focus on P and Si cycles. Biogeochemistry. doi:10.1007/s10533-013-9843-3

    Google Scholar 

  • Raymond PA, Bauer JE (2001) DOC cycling in a temperate estuary: a mass balance approach using natural 14C and 13C isotopes. Limnol Oceanogr 46(3):655–667

    Article  Google Scholar 

  • Resing JA, Mottl MJ (1992) Determination of manganese in seawater using flow injection analysis with on-line preconcentration and spectrophotometric detection. Anal Chem 64(22):2682–2687

    Article  Google Scholar 

  • Revsbech NP (1989) An oxygen microsensor with a guard cathode. Limnol Oceanogr 34:474–478

    Article  Google Scholar 

  • Revsbech NP, Jorgensen BB (1986) Microelectrodes: their use in microbial ecology. Adv Microb Ecol 9:293–352

    Article  Google Scholar 

  • Ruiz-Fernández AC, Hillaire-Marcel C, Ghaleb B, Soto-Jiménez M, Páez-Osuna F (2002) Recent sedimentary history of anthropogenic impacts on the Culiacan River Estuary, northwestern Mexico: geochemical evidence from organic matter and nutrients. Environ Pollut 118:365–377

    Article  Google Scholar 

  • Sarradin PM, Le Bris N, Le Gall C, Rodier P (2005) Fe analysis by the ferrozine method: adaptation to fia towards in situ analysis in hydrothermal environment. Talanta 66(5):1131–1138

    Article  Google Scholar 

  • Seeberg-Elverfeldt J, Schlüter M, Tomas F, Kölling M (2005) Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnol Oceanogr: Methods 3:361–371

    Article  Google Scholar 

  • Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecosystem: ecological and geochemical significance. Limnol Oceanogr 33:702–724

    Article  Google Scholar 

  • Sweerts JP, De Beer D (1989) Microelectrode measurements of nitrate gradients in the littoral and profundal sediments of a meso-eutrophic lake (lake Vechten, the Netherlands). App Envir Microb 55:754–757

    Google Scholar 

  • Tabatabai MA (1974) A rapid method for determination of sulphate in water samples. Environ Lett 7(3):237–242

    Article  Google Scholar 

  • Tesi T, Miserocchi S, Goni MA, Langone L, Boldrin A, Turchetto M (2007) Organic matter origin and distribution in suspended particulate materials and surficial sediments from the western Adriatic Sea (Italy). Estuar. Coast. Shelf S 73:431–446

    Article  Google Scholar 

  • Thamdrup B, Wurgler Hansen J, Barker Jorgensen B (1998) Temperature dependance of aerobic respiration in a costal sediment. FEMS Microiol Ecol 25:189–200

    Google Scholar 

  • Thouzeau G, Grall J, Clavier J, Chauvaud L, Jean F, Leynaert A, Ni Longphuirt S, Amice E, Amouroux D (2007) Spatial and temporal variability of benthic biogeochemical fluxes associated with macrophytic and macrofaunal distributions in the Thau lagoon (France). Estuar Coast Shelf Sci 72(3):432–446

    Article  Google Scholar 

  • Xiao HY, Liu CQ (2010) Identifying organic matter provenance in sediments using isotopic ratios in an urban river. Geochem J 44:181–187

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by EC2CO Moitem-Estuaires. The authors thank the crew of N/O Côtes de la Manche, Bruno Bombled, Manon Le Goff, Xavier Philippon, Agnès Youenou, Roger Kérouel, Julien Queré, Erwan Amice and Robert Marc for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karima Khalil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalil, K., Raimonet, M., Laverman, A.M. et al. Spatial and Temporal Variability of Sediment Organic Matter Recycling in Two Temperate Eutrophicated Estuaries. Aquat Geochem 19, 517–542 (2013). https://doi.org/10.1007/s10498-013-9213-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-013-9213-8

Keywords

Navigation