Skip to main content

Advertisement

Log in

Hydrochemistry of the Amur River: Weathering in a Northern Temperate Basin

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

We report the dissolved major element, organic carbon, and δ13CDOC, δ13CPOC, δD, δ18O, and 87Sr/86Sr composition of 19 summer samples from the Amur River. The Amur transported 2.6 Tg C/year of total organic carbon to the Sea of Okhotsk. The physical weathering rate (PWR) based on suspended particulate material was 13 (1.4–14) tons/(km2 year), and the chemical weathering rate based on total dissolved solids was 7 (4.3–46) tons/(km2 year). We further quantified the sources of the dissolved cations using an inverse model: rain accounted for 2 (0.6–5)%, evaporite 3 (0.7–7)%, carbonate 51 (29–74)%, and silicate 45 (25–64)%. The silicate weathering rate (SWR) in the Amur basin was 23 (15–98) × 103 mol/(km2 year) or 0.67 (0.40–2.81) tons/(km2 year), comparable to those of the Siberian rivers and the Mackenzie at higher latitudes. The SWR of the Amur was negatively correlated with elevation and relief, and positively correlated with runoff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Andrews JE, Brimblecombe P, Jickells TD, Liss PS (1996) An introduction to environmental chemistry. Blackwell, Oxford

    Google Scholar 

  • Bethke CM (2002) The Geochemist’s Workbench 4.0. University of Illinois, USA

    Google Scholar 

  • Bickle MJ, Bunbury J, Chapman HJ, Harris NBW, Fairchild IJ, Ahmad T (2003) Fluxes of Sr into the headwaters of the Ganges. Geochim Cosmochim Acta 67(14):2567–2584. doi:10.1016/S0016-7037(03)00029-2

    Article  Google Scholar 

  • Bird MI, Santrùckova H, Arneth A, Grigoriev S, Gleixner G, Kalaschnikov YN, Lloyd J, Schulze ED (2002a) Soil carbon inventories and carbon-13 on a latitude transect in Siberia. Tellus B Chem Phys Meterol 54(5):631–641. doi:10.1034/j.1600-0889.2002.01334.x

    Article  Google Scholar 

  • Bird M, Santrùckova H, Lloyd J, Lawson E (2002b) The isotopic composition of soil organic carbon on a north-south transect in western Canada. Eur J Soil Sci 53(3):393–403. doi:10.1046/j.1365-2389.2002.00444.x

    Article  Google Scholar 

  • Brown J, Ferrians OJ, Heginbottom JA, Melnikov ES (1998) Circum-Arctic map of permafrost and ground-ice conditions. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, CO

    Google Scholar 

  • Chikaraishi Y, Naraoka H (2003) Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry 63(3):361–371. doi:10.1016/S0031-9422(02)00749-5

    Article  Google Scholar 

  • Cole JJ, Caraco NF (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52(1):101–110. doi:10.1071/MF00084

    Article  Google Scholar 

  • Dalai TK, Krishnaswami S, Sarin MM (2002) Major ion chemistry in the headwaters of the Yamuna river system: chemical weathering, its temperature dependence and CO2 consumption in the Himalaya. Geochim Cosmochim Acta 66(19):3397–3416. doi:10.1016/S0016-7037(02)00937-7

    Article  Google Scholar 

  • Degens ET, Kempe S, Richey JE (1991) Summary: biogeochemistry of major world rivers. In: Degens ET, Kempe S, Richey J (eds) Biogeochemistry of the Major World Rivers. Wiley, Chichester

    Google Scholar 

  • Dürr HH, Meybeck M, Dürr SH (2005) Lithologic composition of the Earth’s continental surfaces derived from a new digital map emphasizing riverine material transfer. Global Biogeochem Cycles 19:GB4S10. doi:10.1029/2005GB002515

  • Edmond JM, Palmer MR, Measures CI, Grant B, Stallard RF (1995) The fluvial geochemistry and denudation rate of the Guayana Shield in Venezuela, Colombia, and Brazil. Geochim Cosmochim Acta 59(16):3301–3325. doi:10.1016/0016-7037(95)00128-M

    Article  Google Scholar 

  • Edmond JM, Palmer MR, Measures CI, Brown ET, Huh Y (1996) Fluvial geochemistry of the eastern slope of the northeastern Andes and its foredeep in the drainage of the Orinoco in Colombia and Venezuela. Geochim Cosmochim Acta 60(16):2949–2974. doi:10.1016/0016-7037(96)00142-1

    Article  Google Scholar 

  • Epstein S, Mayeda TK (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224. doi:10.1016/0016-7037(53)90051-9

    Article  Google Scholar 

  • Fekete BM, Vörösmarty CJ, Grabs W (2002) High-resolution fields of global runoff combining observed river discharge and simulated water balances. Glob Biogeochem Cycles 16(3):1042. doi:1010.1029/1999GB001254

    Article  Google Scholar 

  • Frost BR, Avchenko OV, Chamberlain KR, Frost CD (1998) Evidence for extensive Proterozoic remobilization of the Aldan shield and implications for Proterozoic plate tectonic reconstructions of Siberia and Laurentia. Precambrian Res 89(1–2):1–23. doi:10.1016/S0301-9268(97)00074-0

    Article  Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159(1–4):3–30. doi:10.1016/S0009-2541(99)00031-5

    Article  Google Scholar 

  • Galy A, France-Lanord C (1999) Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget. Chem Geol 159(1–4):31–60. doi:10.1016/S0009-2541(99)00033-9

    Article  Google Scholar 

  • Hagedorn F, Saurer M, Blaser P (2004) A 13C tracer study to identify the origin of dissolved organic carbon in forested mineral soils. Eur J Soil Sci 55(1):91–100. doi:10.1046/j.1365-2389.2003.00578.x

    Article  Google Scholar 

  • Hearn P, Hare T, Schruben P, Sherrill D, Lamar C, Tsushima P (2001) Global GIS database: digital atlas of South Asia. U.S. Geological Survey, Reston, USA

    Google Scholar 

  • Hren MT, Chamberlain CP, Hilley GE, Blisniuk PM, Bookhagen B (2007) Major ion chemistry of the Yarlung Tsangpo-Brahmaputra river: chemical weathering, erosion, and CO2 consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya. Geochim Cosmochim Acta 71(12):2907–2935. doi:10.1016/j.gca.2007.03.021

    Article  Google Scholar 

  • Huh Y, Edmond JM (1999) The fluvial geochemistry of the rivers of Eastern Siberia: III. Tributaries of the Lena and Anabar draining the basement terrain of the Siberian Craton and the Trans-Baikal Highlands. Geochim Cosmochim Acta 63(7–8):967–987. doi:10.1016/S0016-7037(99)00045-9

    Article  Google Scholar 

  • Huh Y, Panteleyev G, Babich D, Zaitsev A, Edmond JM (1998a) The fluvial geochemistry of the rivers of Eastern Siberia: II. Tributaries of the Lena, Omoloy, Yana, Indigirka, Kolyma, and Anadyr draining the collisional/accretionary zone of the Verkhoyansk and Cherskiy ranges. Geochim Cosmochim Acta 62(12):2053–2075. doi:10.1016/S0016-7037(98)00127-6

    Article  Google Scholar 

  • Huh Y, Tsoi M-Y, Zaitsev A, Edmond JM (1998b) The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton. Geochim Cosmochim Acta 62(10):1657–1676. doi:10.1016/S0016-7037(98)00107-0

    Article  Google Scholar 

  • IAEA/WMO (2004) Global network of isotopes in precipitation. The GNIP database. http://www.isohis.iaea.org. Accessed 25 Apr 2007

  • Jones JB Jr, Mulholland PJ (1998) Influence of drainage basin topography and elevation on carbon dioxide and methane supersaturation of stream water. Biogeochemistry 40(1):57–72. doi:10.1023/A:1005914121280

    Article  Google Scholar 

  • Kao S, Liu K (2002) Exacerbation of erosion induced by human perturbation in a typical Oceania watershed: insight from 45 years of hydrological records from the Lanyang-Hsi River, northeastern Taiwan. Glob Biogeochem Cycles 16(1):1016. doi:1010.1029/2000GB001334

    Article  Google Scholar 

  • Karim A, Veizer J (2000) Weathering processes in the Indus River Basin: implications from riverine carbon, sulfur, oxygen, and strontium isotopes. Chem Geol 170(1–4):153–177. doi:10.1016/S0009-2541(99)00246-6

    Article  Google Scholar 

  • Kravchinsky VA, Sorokin AA, Courtillot V (2002) Paleomagnetism of paleozoic and mesozoic sediments from the southern margin of Mongol-Okhotsk ocean far Eastern Russia. J Geophys Res 107(B10):2253. doi:2210.1029/2001JB000672

    Article  Google Scholar 

  • Krishnaswami S, Singh SK, Dalai TK (1999) Silicate weathering in the Himalaya: role in contributing to major ions and radiogenic Sr to the Bay of Bengal. In: Somayajulu BLK (ed) Ocean science. Trends and future directions. Indian National Science Academy and Akademia International, New Delhi, pp 23–51

    Google Scholar 

  • Leemans R, Cramer W (1991) The IIASA database for mean monthly values of temperature, precipitation and cloudiness on a global terrestrial grid. IIASA Research Report RR-91-18. International Institute of Applied Systems Analyses, Laxenburg

  • Lobbes JM, Fitznar HP, Kattner G (2000) Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochim Cosmochim Acta 64(17):2973–2983

    Article  Google Scholar 

  • Makhinov AN (2005) Amur terrigene and chemical discharge formation. In: Shiraiwa T (ed) Report on Amur-Okhotsk project No. 3. International Kyoto Symposium, Japan, 147 pp

  • Meybeck M (2003) Global occurrence of major elements in rivers. In: Drever J (ed) Treatise on geochemistry: surface and ground water, weathering, and soils, vol 5. Elsevier, San Diego, pp 207–223

  • Meybeck M, Ragu A (1997) River discharges to the oceans: an assessment of suspended solids, major ions and nutrients. UNEP Publication, Nairobi, Kenya

    Google Scholar 

  • Millot R, Gaillardet J, Dupré B, Allègre CJ (2002) The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth Planet Sci Lett 196(1–2):83–98. doi:10.1016/S0012-821X(01)00599-4

    Article  Google Scholar 

  • Millot R, Gaillardet J, Dupré B, Allègre CJ (2003) Northern latitude chemical weathering rates: clues from the Mackenzie River Basin, Canada. Geochim Cosmochim Acta 67(7):1305–1329. doi:10.1016/S0016-7037(02)01207-3

    Article  Google Scholar 

  • Moon S, Huh Y, Qin J, van Pho N (2007) Chemical weathering in the Hong (Red) River basin: rates of silicate weathering and their controlling factors. Geochim Cosmochim Acta 71(6):1411–1430. doi:10.1016/j.gca.2006.12.004

    Article  Google Scholar 

  • Morrison J, Brockwell T, Merren T, Fourel F, Phillips AM (2001) On-line high precision stable hydrogen isotopic analyses on nanoliter water samples. Anal Chem 73:3570–3575. doi:10.1021/ac001447t

    Article  Google Scholar 

  • Mortatti J, Probst J-L (2003) Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: seasonal and spatial variations. Chem Geol 197(1–4):177–196. doi:10.1016/S0009-2541(02)00349-2

    Article  Google Scholar 

  • Nakatsuka T, Fujimune T, Yoshikawa C, Noriki S, Kawamura K, Fukamachi Y, Mizuta G, Wakatsuchi M (2004a) Biogenic and lithogenic particle fluxes in the western region of the Sea of Okhotsk: implications for lateral material transport and biological productivity. J Geophys Res 109:C09S13. doi:10.1029/2003JC001908 doi:10.1029/2003JC001908

  • Nakatsuka T, Toda M, Kawamura K, Wakatsuchi M (2004b) Dissolved and particulate organic carbon in the Sea of Okhotsk: transport from continental shelf to ocean interior. J Geophys Res 109:C09S14. doi:10.1029/2003JC001909

  • Négrel P, Allègre CJ, Dupré B, Lewin E (1993) Erosion sources determined by inversion of major and trace element ratios and strontium isotopic ratios in river: the Congo Basin case. Earth Planet Sci Lett 120(1–2):59–76. doi:10.1016/0012-821X(93)90023-3

    Article  Google Scholar 

  • Otofuji Y-I, Matsuda T, Enami R, Uno K, Nishihama K, Halim N, Su L, Zaman H, Kulinich RG, Zimin PS, Matunin AP, Sakhno VG (2003) Late Cretaceous palaeomagnetic results from Sikhote Alin, far eastern Russia: tectonic implications for the eastern margin of the Mongolia Block. Geophys J Int 152(1):202–214. doi:10.1046/j.1365-246X.2003.01842.x

    Article  Google Scholar 

  • Qin J, Huh Y, Edmond JM, Du G, Ran J (2006) Weathering and anthropogenic impact in the Min Jiang, a headwater tributary of the Yangtze River. Chem Geol 227:53–69. doi:10.1016/j.chemgeo.2005.09.011

    Article  Google Scholar 

  • Rickey JE (2004) Emission of CO2 from riverine systems. In: Steffen W, Sanderson A, Jäger J, Tyson PD, Moore BIII, Matson PA, Richardson K, Oldfield F, Schellnhuber H-J, Turner BLII, Wasson RJ (eds) Global change and the earth system: a planet under pressure. Springer-Verlag, Berlin, pp 172–173

    Google Scholar 

  • Roy S, Gaillardet J, Allègre CJ (1999) Geochemistry of dissolved and suspended loads of the Seine River, France: anthropogenic impact, carbonate and silicate weathering. Geochim Cosmochim Acta 63(9):1277–1292. doi:10.1016/S0016-7037(99)00099-X

    Article  Google Scholar 

  • Seki O, Ikehara M, Kawamura K, Nakatsuka T, Ohnishi K, Wakatsuchi M, Narita H, Sakamoto T (2004) Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr. Paleoceanography 19:PA1016, doi:1010.1029/2002PA000808

  • Seki O, Yoshikawa C, Nakatsuka T, Kawamura K, Wakatsuchi M (2006) Fluxes, source and transport of organic matter in the western Sea of Okhotsk: stable carbon isotopic ratios of n-alkanes and total organic carbon. Deep Sea Res Part I Oceanogr Res Pap 53(2):253–270. doi:10.1016/j.dsr.2005.11.004

    Article  Google Scholar 

  • Shouakar-Stash O, Alexeev SV, Frape SK, Alexeeva LP, Drimmie RJ (2007) Geochemistry and stable isotopic signatures, including chlorine and bromine isotopes, of the deep groundwaters of the Siberian Platform, Russia. Appl Geochem 22(3):589–605. doi:10.1016/j.apgeochem.2006.12.005

    Article  Google Scholar 

  • Skoulikidis NT (1993) Significance evaluation of factors controlling river water composition. Environ Geol 22(2):178–185

    Google Scholar 

  • Sotnikov VI, Sorokin AA, Ponomarchuk VA, Gimon VO, Sorokin AP (2007) Porphyry Cu–Mo–(Au) mineralization: the age and relationship with igneous rock complexes of the Borgulikan ore field (upper-Amur region). Russ Geol Geophys 48(2):177–184. doi:10.1016/j.rgg.2007.02.003

    Article  Google Scholar 

  • Spitzy A, Leenheer J (1991) Dissolved organic carbon in rivers. In: Degens ET, Kempe S, Richey J (eds) Biogeochemistry of the major world rivers. Wiley, Chichester

    Google Scholar 

  • Suchet PA, Probst JL, Ludwig W (2003) Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob Biogeochem Cycles 17(2):1038. doi:1010.1029/2002GB001891

    Article  Google Scholar 

  • West AJ, Bickle MJ, Collins R, Brasington J (2002) Small-catchment perspective on Himalayan weathering fluxes. Geology 30(4):355–358. doi:10.1130/0091-7613(2002)030<0355:SCPOHW>2.0.CO;2

    Article  Google Scholar 

  • West AJ, Galy A, Bickle M (2005) Tectonic and climatic controls on silicate weathering. Earth Planet Sci Lett 235(1–2):211–228. doi:10.1016/j.epsl.2005.03.020

    Article  Google Scholar 

  • World Wildlife Fund (2000) World Wildlife Fund Ecoregions. ESRI Data & Maps Environmental Systems Research Institute, Inc. (ESRI), Redlands, CA, USA

  • Wu L, Huh Y, Qin J, Du G, van Der Lee S (2005) Chemical weathering in the Upper Huang He (Yellow River) draining the eastern Qinghai-Tibet Plateau. Geochim Cosmochim Acta 69(22):5279–5294. doi:10.1016/j.gca.2005.07.001

    Article  Google Scholar 

  • Xu Z, Liu C-Q (2007) Chemical weathering in the upper reaches of Xijiang River draining the Yunnan-Guizhou Plateau, Southwest China. Chem Geol 239(1–2):83–95. doi:10.1016/j.chemgeo.2006.12.008

    Article  Google Scholar 

  • Zakharova EA, Pokrovsky OS, Dupré B, Zaslavskaya MB (2005) Chemical weathering of silicate rocks in Aldan Shield and Baikal Uplift: insights from long-term seasonal measurements of solute fluxes in rivers. Chem Geol 214(3–4):223–248. doi:10.1016/j.chemgeo.2004.10.003

    Article  Google Scholar 

  • Zonenshain LP, Kuzmin MI, Natapov LM, Page BM, Board AGUGM (1990) Geology of the USSR: a plate-tectonic synthesis. Geodynamics Series, vol 21. American Geophysical Union, Washington, DC

Download references

Acknowledgments

The authors would like to thank Y. Han and J. Yoon for valuable discussions and Y. Lee for technical support. We also thank S. Bowring at MIT for TIMS measurements. This study was supported by the US NSF EAR 0134966, and the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MOST) (No. R01-2006-000-10019-0) to Y. Huh, and the Brain Korea 21 graduate student fellowship to S. Moon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngsook Huh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, S., Huh, Y. & Zaitsev, A. Hydrochemistry of the Amur River: Weathering in a Northern Temperate Basin. Aquat Geochem 15, 497–527 (2009). https://doi.org/10.1007/s10498-009-9063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-009-9063-6

Keywords

Navigation