Skip to main content
Log in

Closed Basin Brine Evolution and the Influence of Ca–Cl Inflow Waters: Death Valley and Bristol Dry Lake California, Qaidam Basin, China, and Salar de Atacama, Chile

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Diagenetic-hydrothermal brines, here called “hydrothermal Ca–Cl brines,” have compositions that reflect interactions between groundwaters and rocks or sediments at elevated temperatures. Hydrothermal Ca–Cl brines reach the surface by convection-driven or topographically driven circulation, and discharge as springs or seeps along fault zones to become important inflow waters in many tectonically active closed basins. Case studies from (1) Qaidam Basin, China, (2) Death Valley, California, (3) Salar de Atacama, Chile, and (4) Bristol Dry Lake, California illustrate that hydrothermal Ca–Cl inflow waters have influenced brine evolution in terms of major ion chemistries and mineral precipitation sequences. All four basins are tectonically active; three (Death Valley, Salar de Atacama, and Qaidam Basin) have well-documented Ca–Cl spring inflow and Holocene faulting. Bristol Dry Lake has young volcanic deposits and Salar de Atacama has an active stratovolcano on its eastern margin, indicating subsurface magma bodies. A midcrustal magma chamber has been identified in southern Death Valley. Volcanism and faulting in these closed basins provides the heat source for hydrothermal-diagenetic processes and the energy and pathways to deliver these waters to the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alonso H, Risacher F (1996) Geoquimica del Salar de Atacama, parte 1: origen de los componentes y balance salino. Rev Geol Chil 23:113–122

    Google Scholar 

  • Alt JC (1995) Subseafloor processes in mid-ocean ridge hydrothermal systems. In: Humphris SE et al (eds) Seafloor hydrothermal systems. American Geophysical Union, Washington, DC, pp 85–114

    Google Scholar 

  • Berner EK, Berner RA (1996) Global environment: water, air, and geochemical cycles. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • Bevacqua P (1991) Geomorfología del Salar de Atacama y estratigrafía de su nucleo y delta, segunda región de Antofagasta, Chile (Geomorphology of the Salar de Atacama, and stratigraphy of the nucleus and delta; Second region of Antofagasta, Chile). Ph.D. Thesis, Universidad Católica del Norte, Chile, 251 p

  • Bevacqua P (1995) Lacustrine deposits in the Preandean Atacama basin: The Salar de Atacama, In: Sáez A (ed) Cenozoic and quaternary lacustrine systems in northern Chile (Central Andes, Arc and Fore-arc Zones). Excursion guidebook: global palaeoenvironmental archives in lacustrine systems-international association of sedimentologists meeting (GLOPALS-IAS Meeting), Antofagasta, Chile, pp 47–62

  • Bobst AL, Lowenstein TK, Jordan TE, Godfrey LV, Ku T-L, Luo S (2001) A 106 ka paleoclimate record from drill core of the Salar de Atacama, northern Chile. Palaeogeogr Palaeoclimatol Palaeoecol 173:21–42. doi:10.1016/S0031-0182(01)00308-X

    Article  Google Scholar 

  • Boschetti T, Cortecci G, Barbieri M, Mussi M (2007) New and past geochemical data on fresh to brine waters of the Salar de Atacama and Andean Altiplano, northern Chile. Geofluids 7:33–50. doi:10.1111/j.1468-8123.2006.00159.x

    Article  Google Scholar 

  • Burchfiel BC, Stewart JH (1966) “Pull-apart” origin of the central segment of Death Valley, California. Geol Soc Am Bull 77:439–442. doi:10.1130/0016-7606(1966)77[439:POOTCS]2.0.CO;2

    Article  Google Scholar 

  • Carmona V, Pueyo JJ, Taberner C, Chong G, Thirlwall M (2000) Solute inputs in the Salar de Atacama (N. Chile). J Geochem Explor 69–70:449–452. doi:10.1016/S0375-6742(00)00128-X

    Article  Google Scholar 

  • Carpenter AB (1978) Origin and chemical evolution of brines in sedimentary basins. In: Johnson KS and Russell JR (eds) 13th industrial minerals forum Oklahoma geological survey circular, Norman, Oklahma, 79, pp 60–77

  • Casas E, Lowenstein TK, Spencer RJ, Zhang P (1992) Carnallite mineralization in the nonmarine Qaidam Basin, China: evidence for the early diagenetic origin of potash evaporites. J Sediment Petrol 62:881–898

    Google Scholar 

  • Chen W-P, Chen C-Y, Nábelek JL (1999) Present-day deformation of the Qaidam basin with implications for intra-continental tectonics. Tectonophysics 305:165–181. doi:10.1016/S0040-1951(99)00006-2

    Article  Google Scholar 

  • de Voogd B, Serpa L, Brown L, Hauser E, Kaufman S, Oliver J, Troxel BW, Willemin J, Wright LA (1986) Death Valley bright spot: a midcrustal magma body in the southern Great Basin, California? Geology 14:64–67 doi: 10.1130/0091-7613(1986)14<64:DVBSAM>2.0.CO;2

    Article  Google Scholar 

  • Drever JI (1988) The geochemistry of natural waters, 2nd edn. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  • Eugster HP, Hardie LA (1978) Saline Lakes. In: Lerman A (ed) Lakes chemistry, geology, physics. Springer-Verlag, New York, pp 237–293

    Google Scholar 

  • Forester RM, Lowenstein TK, Spencer RJ (2005) An ostracode based paleolimnologic and paleohydrologic history of Death Valley: 200 to 0 ka. Geol Soc Am Bull 117:1379–1386. doi:10.1130/B25637.1

    Article  Google Scholar 

  • Handford CR (1982) Sedimentology and evaporite genesis in a Holocene continental-sabkha playa basin—Bristol Dry Lake, California. Sedimentology 29:239–253. doi:10.1111/j.1365-3091.1982.tb01721.x

    Article  Google Scholar 

  • Hanor JS (1994) Origin of saline fluids in sedimentary basins. In: Parnell J (ed) Geofluids: origin, migration and evolution of fluids in sedimentary basins Geological Society (London) Special Publication 78, London, pp 151–174

  • Hardie LA (1990) The roles of rifting and hydrothermal CaCl2 brines in the origin of potash evaporites: an hypothesis. Am J Sci 290:43–106

    Google Scholar 

  • Hill ML, Troxel BW (1966) Tectonics of Death Valley region, California. Geol Soc Am Bull 77:435–438. doi:10.1130/0016-7606(1966)77[435:TODVRC]2.0.CO;2

    Article  Google Scholar 

  • Hunt CB, Mabey DR (1966) Stratigraphy and structure, Death Valley, California. U.S. Geological Survey Professional Paper 494-A, 162 p

  • Hunt CB, Robinson TW, Bowles WA, Washburn AL (1966) Hydrologic basin Death Valley California. U.S. Geological Survey Professional Paper 494-B, 138 p

  • Ide F (1978) Cubicación del yacimiento Salar de Atacama. Memoria para optar al título de Ingeniero Civil de Minas. Facultad de Ciencias Fisicas y Matemáticas, Departamento de Minas, Universidad de Chile, Santiago, 144 pp

  • Jones BF (1966) Geochemical evolution of closed basin water in the western Great Basin. In: Rau JL (ed) 2nd symposium on salt, Northern Ohio Geological Society, Cleveland, Ohio, pp 181–200

  • Jones BF, Deocampo DM (2004) Geochemistry of saline lakes. Treatise Geochem 5:393–424. doi:10.1016/B0-08-043751-6/05083-0

    Article  Google Scholar 

  • Jordan TE, Munoz N, Hein M, Lowenstein T, Godfrey L, Yu J (2002) Active faulting and folding without topographic expression in an evaporite basin, Chile. Geol Soc Am Bull 114:1406–1421 doi: 10.1130/0016-7606(2002)114<1406:AFAFWT>2.0.CO;2

    Article  Google Scholar 

  • Kharaka YK, Maest AS, Carothers WW, Law LM, Lamothe PJ, Fries TL (1987) Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, U.S.A. Appl Geochem 2:543–561. doi:10.1016/0883-2927(87)90008-4

    Article  Google Scholar 

  • Kharaka YK, Hanor JS (2004) Deep fluids in the continents: I. sedimentary basins. Treatise Geochem 5:499–540

    Google Scholar 

  • Land LS, Prezbindowski (1981) The origin and evolution of saline formation water, lower Cretaceous carbonates, south-central Texas, U.S.A. J Hydrol (Amst) 54:51–74. doi:10.1016/0022-1694(81)90152-9

    Article  Google Scholar 

  • Land LS, Macpherson GL, Mack LE (1988) The geochemistry of saline formation waters, Miocene, offshore Louisiana. Trans Gulf Coast Assoc Geol Soc 38:503–511

    Google Scholar 

  • Li J, Lowenstein TK, Blackburn IR (1997) Responses of evaporite mineralogy to inflow water sources and climate during the past 100k.y. in Death Valley, California. Geol Soc Am Bull 109:1361–1371 doi: 10.1130/0016-7606(1997)109<1361:ROEMTI>2.3.CO;2

    Article  Google Scholar 

  • Lowenstein TK, Spencer RJ, Zhang P (1989) Origin of ancient potash evaporites: Clues from the modern nonmarine Qaidam Basin of western China. Science 245:1090–1092. doi:10.1126/science.245.4922.1090

    Article  Google Scholar 

  • Lowenstein TK, Li J, Brown C, Roberts SM, Ku T-L, Luo S, Yang W (1999) 200k.y. paleoclimate record from Death Valley salt core. Geology 27:3–6 doi: 10.1130/0091-7613(1999)027<0003:KYPRFD>2.3.CO;2

    Article  Google Scholar 

  • Lowenstein TK, Hein MC, Bobst AL, Jordan TE, Ku T-L, Luo S (2003) An assessment of stratigraphic completeness in climate-sensitive closed-basin lake sediments: Salar de Atacama, Chile. J Sediment Res 73:91–104. doi:10.1306/061002730091

    Article  Google Scholar 

  • McKibben MA, Williams AE, Elders WA, Eldridge CS (1987) Saline brines and metallogenesis in a modern sediment-filled rift: the Salton Sea geothermal system, California, U.S.A. Appl Geochem 2:563–578. doi:10.1016/0883-2927(87)90009-6

    Article  Google Scholar 

  • McKibben MA, Williams AE, Okubo S (1988) Metamorphosed Plio-Pleistocene evaporites and the origins of hypersaline brines in the Salton Sea geothermal system, California: fluid inclusion evidence. Geochim Cosmochim Acta 52:1047–1056. doi:10.1016/0016-7037(88)90259-1

    Article  Google Scholar 

  • Moraga A, Chong G, Fortt MA, Henriquez H (1974) Estudio geologico del Salar de Atacama, provincia de Antofagasta (Geologic study of the Salar de Atacama, province of Antofagasta). Instituto de Investigaciones Geologicas, Chile, Bulletin 29, p 56

  • Muffler LJP, White DE (1969) Active metamorphism of Upper Cenozoic sediments in the Salton Sea Geothermal Field and the Salton Trough, southeastern California. Geol Soc Am Bull 80:157–182. doi:10.1130/0016-7606(1969)80[157:AMOUCS]2.0.CO;2

    Article  Google Scholar 

  • Peltzer G, Tapponier P, Armijo R (1989) Magnitude of late quaternary left-lateral displacements along the north edge of Tibet. Science 246:1285–1289. doi:10.1126/science.246.4935.1285

    Article  Google Scholar 

  • Phillips FM (2003) Cosmogenic 36Cl ages of quaternary basalt flows in the Mojave Desert, California, USA. Geomorphology 53:199–208. doi:10.1016/S0169-555X(02)00328-8

    Article  Google Scholar 

  • Risacher F, Alonso H (1996) Geoquimica del Salar de Atacama, parte 2: evolucion de las aguas. Rev Geol Chil 23:123–134

    Google Scholar 

  • Risacher F, Alonso H, Salazar C (2003) The origin of brines and salts in Chilean salars: a hydrochemical review. Earth Sci Rev 63:249–293. doi:10.1016/S0012-8252(03)00037-0

    Article  Google Scholar 

  • Rosen MR (1989) Sedimentological, geochemical, and hydrologic evolution of an intracontinental, closed-basin playa (Bristol Dry Lake,CA): a model for playa development and its implications for paleoclimate. Ph.D. Thesis, University of Texas, Austin, p 266

  • Rosen MR (1991) Sedimentologic and geochemical constraints on the evolution of Bristol Dry Lake Basin, California, U.S.A. Palaeogeogr Palaeoclimatol Palaeoecol 84:229–257. doi:10.1016/0031-0182(91)90046-T

    Article  Google Scholar 

  • Rosen MR (2000) Sedimentology, stratigraphy, and hydrochemistry of Bristol Dry Lake. In: Gierlowski-Kordesch EH, Kelts KR (eds) Lake Basins through space and time. American Association of Petroleum Geologists, Tulsa, Oklahoma, pp 597–604

    Google Scholar 

  • Rosen MR, Warren JK (1990) The origin and significance of groundwater-seepage gypsum from Bristol Dry Lake, California, USA. Sedimentology 37:983–996. doi:10.1111/j.1365-3091.1990.tb01840.x

    Google Scholar 

  • Serpa L, de Voogd B, Wright L, Willemin J, Oliver J, Hauser E, Troxel B (1988) Structure of the central Death Valley pull-apart basin and vicinity from COCORP profiles in the southern Great Basin. Geol Soc Am Bull 100:1437–1450. doi:10.1130/0016-7606(1988)100<1437:SOTCDV>2.3.CO;2

    Article  Google Scholar 

  • Spencer RJ, Lowenstein TK, Casas E, Zhang P (1990) Origin of potash salts and brines in the Qaidam Basin, China. In: Spencer RJ, Chou IM (eds) Fluid-mineral interactions: a tribute to H.P. Eugster. The Geochemical Society, San Antonio, pp 395–408

    Google Scholar 

  • Steinkampf WC, Werrell WL (2001) Ground-water flow to Death Valley, as inferred from the chemistry and geohydrology of selected springs in Death Valley National Park, California and Nevada. U.S. Geological Survey Water-Resources Investigations Report, 98-4114, 37 p

  • Von Damm KL (1995) Controls on the chemistry and temporal variability of seafloor hydrothermal fluids. In: Humphris SE et al (eds) Seafloor hydrothermal systems. American Geophysical Union, Washington, DC, pp 222–247

    Google Scholar 

  • Vengosh A, Chivas AR, Starinsky A, Kolodny Y, Zhang B, Zhang P (1995) Chemical and boron isotope compositions of non-marine brines from the Qaidam basin, Qinghai, China. Chem Geol 120:135–154. doi:10.1016/0009-2541(94)00118-R

    Article  Google Scholar 

  • Wang Q, Coward MP (1990) The Chaidam Basin (NW China): formation and hydrocarbon potential. J Pet Geol 13:3–112

    Google Scholar 

  • Wills CJ (1989) A neotectonic tour of the Death Valley fault zone. Calif Geol 42:195–200

    Google Scholar 

  • Winograd IJ, Thordarson W (1975) Hydrogeologic and hydrochemical framework, south-central Great Basin, Nevada-California, with special reference to the Nevada Test Site. U.S. Geological Survey Professional Paper 712-C, 126 p

  • Zhang P (1987) Saline Lakes of Qaidam Basin. Publishing House of Science, Beijing

    Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers, Andrew Bobst, Linda Godfrey, Joseph Smoot, and Michael Rosen for their thoughtful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim K. Lowenstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowenstein, T.K., Risacher, F. Closed Basin Brine Evolution and the Influence of Ca–Cl Inflow Waters: Death Valley and Bristol Dry Lake California, Qaidam Basin, China, and Salar de Atacama, Chile. Aquat Geochem 15, 71–94 (2009). https://doi.org/10.1007/s10498-008-9046-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-008-9046-z

Keywords

Navigation